CHAPTER I
SPHERICAL TRIGONOMETRY

1. Introduction.

When we look at the stars on a clear night we have the familiar
impression that they are all sparkling points of light, apparently
situated on the surface of a vast sphere of which the individual
observer is the centre. The eye, of course, fails to give any in-
dication of the distances of the stars from us; however, it allows
us to make some estimate of the angles subtended at the observer
by any pairs of stars and, with suitable instruments, these angles
can be measured with great precision. Spherical Astronomy is
concerned essentially with the directions in which the stars are
viewed, and it is convenient to define these directions in terms
of the positions on the surface of a sphere—the celestial sphere—
in which the straight lines, joining the observer to the stars,
intersect this surface. 1t isin this sense that the usual expression
“the position of a star on the celestial sphere” is to be inter-
preted. The radius of the sphere is entirely arbitrary. The
foundation of Spherical Astronomy is the geometry of the sphere.

2. The spherical triangle.

Any plane passing through the centre of a sphere cuts the
surface in a circle which is called a great circle. Any other plane
intersecting the sphere but not passing through the centre will
also cut the surface in a circle which, in this case, is called a
small circle. In Fig. 1, EAB is a great circle, for its plane passes
through O, the centre of the sphere. Let QOP be the diameter of
the sphere perpendicular to the plane of the great circle EAB.
Let R be any point in OP and suppose a plane drawn through
R parallel to the plane of EAB; the surface of the sphere is then
intersected in the small circle FCD. It follows from the con-
struction that OP is also perpendicular to the plane of #CD. The
extremities P and @ of the common perpendicular diameter QOP
are called the poles of the great circle and of the parallel small
circle. Now let PCAQ be any great circle passing through the
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poles P and @ and intersecting the small circle FCD and the
great circle EAB in C and A respectively. Similarly, PDB is
part of another great circle passing through P and @. We shall
find it convenient to refer to a particular great circle by specifying
simply any portion of its circumference. When two great circles
intersect at a point they are said to include a spherical angle
which is defined as follows. Consider the two great circles PA
and PB intersecting at P. Draw PS and PT, the tangents to the
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circumferences of P4 and PB respectively. PT is, by construc-
tion, perpendicular to the radius OP of the great circle PB and,
being in the plane PBO, is therefore parallel to the radius OB.
Similarly PS is parallel to the radius O4. The angle SPT
defines the spherical angle at P between the two great circles
P4 and PB, and it is equal to the angle AOB, 4B being the arc
intercepted on the great circle, of which P is the pole, between
the two great circles PA and PB. It is to be emphasised that a
spherical angle is defined only with reference to two intersecting
great circles.
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If we are given any three points on the surface of a sphere,
then the sphere can be bisected so that all three points lie in the
same hemisphere. If the points are joined by great circle arcs
all lying on this hemisphere the figure obtained is called a
spherical triangle. Thus, in Fig. 1, the three points A, X and Y on
the spherical surface are joined by great circle arcs to form the
spherical triangle AXY. AX, AY and XY are the sides and the
spherical angles at 4, X and Y are the angles of the spherical
triangle. Actually, if R is the radius of the sphere, the length of
the great circle arc AY is given by

AY = R x angle AOY,

the angle AOY being expressed in circular measure, i.e. in
radians. Now for all great circle arcs on the sphere the radius
R is constant and it is convenient to consider its length as unity.
The arc AY is then simply the angle which it subtends at the
centre of the sphere, If AY is, let us say, one-eighth of the
circumference of the complete great circle through 4 and Y, the

gide 47 is then Z

if it is expressed as 45°; similarly, for the remaining sides of the
triangle. It follows from the definition of a spherical triangle
that no side can be equal to or greater than 180°. As another
example, PAB is a spherical triangle two of whose sides P4 and

in circular measure and there is no ambiguity

PB each subtend g radians or 90° at O; in this instance we say

that PA and PB are each equal to 1—2r radians or 90°. But PCD

is not a spherical triangle, for the arc CD is not a part of a great
circle. Accordingly, the formulae which will be derived for
spherical triangles will not be applicable to such a figure as PCD.

3. Length of a small circle arc.
Consider, in Fig. 1, the small circle arc CD. Itslength is given
by CD = RC x angle CRD.
Also, the length of the great circle arc AB is given by
AB = 0A x angle A0B.

But since the plane of FCD is parallel to the plane of E4A B, then
ORD = AOB, for RC, RD are respectively parallel to 04, OB.
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Therefore CD = 04 .AB.
But, since 04 = OC (radii of the sphere), we have
RC
CD=55- AB.

Now RC is perpendicular to OR; ", RC = OC cos RCO. From
the parallelism of RC and 04, RCO = 40C. Hence
CD = AB cos A0C.
Now AOC is the angle subtended at the centre of the sphere by
the great circle arc AC. The formula can then be written as
CD = ABcos AC,

CD = ABsin PC

4. Terrestrial latitude and longitude.

The concepts introduced so far will now be illustrated with
reference to the earth. For many practical problems, the earth
can be regarded as a spherical body spinning about a diameter
PQ (Fig. 2). P is the north pole and @ is the south pole. The
great circle whose plane is perpendicular to PQ is called the
equator. Any semi-great circle terminated by P and @ is a

or, since PA = 90°,
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meridian. In particular, the meridian which passed through the
fundamental instrument (the transit circle) of Greenwich Ob-
servatory is, by universal agreement, regarded as the principal
or standard meridian; let it be PGKQ in Fig. 2, intersecting the
equator in K. Let PHLQ be any other meridian cutting the
equator in L. The angle KOL is defined to be the longitude of the
meridian PHQ and it can be described equally well as the equa-
torial arc KL or the spherical angle KPL. Longitudes are
measured from 0° to 180° east of the Greenwich meridian and
from 0° to 180° west, following the directions of the arrows near
K in Fig. 2. Thus, from the figure, the longitude of the meridian
PH@ is about 100° east (E) and that of the meridian PMQ is
about 60° west (W). All places on the same meridian have the
same longitude and the meridian on which a particular place is
situated is specified with reference to the principal meridian
PGQ. To specify completely the position of a place on the surface
of the earth, we require to describe its position on its meridian
of longitude. This is done with reference to the equator. Consider
a place J on the meridian PHQ. The meridian through J cuts the
equator in L and the angle LOJ, or the great circle arc LJ, is
called the latitude of J. If J is between the equator and the
north pole P, as in Fig. 2, the latitude is said to be north (N);
a place such as R, between the equator and the south pole @, is
said to have south latitude (S). In this way the position of any
point on the surface of the earth is referred to the two funda-
mental great circles, the equator and the meridian of Greenwich.

Let ¢ denote the latitude of J; then LOJ or LJ = #. Since
OP is perpendicular to the plane of the equator, POL = 90° and
therefore POJ = 90° — ¢. The angle POJ or the spherical are
PJ is the colatitude of J. We have thus

Colat. = 90° — Lat.

All places which have the same latitude lie on a small circle
parallel to the equator, called a parallel of latitude. Thus all
places with the same latitude as Greenwich lie on the small circle
MG@HX. If 6 denotes the latitude of Greenwich, then by formula
(1) the length of the small circle arc HX, for example, is given in
terms of the length of the corresponding equatorial are LY by

HX = LY cos @ eeeenn(2).
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To give greater precision to the meaning of this formula, we
consider the units in which distances on the surface of the earth
are expressed. The simplest is that defined as the great circle
distance between two points subtending an angle of one minute
of arc at the centre of the earth—this unit is known as the
nautical mile and is equivalent to 8080 feet (we neglect the small
variations in this value due to the fact that the earth is not
quite a sphere). If the difference in longitude between any two
places on the same parallel of latitude is known, e.g. LY, then
LY can be expressed as s0 many minutes of arc and this number
is the number of nautical miles between the two points L and Y
on the equator. The formula (2) then provides the means of
calculating the distance between H and X expressed in nautical
miles (or minutes of arc) and measured along the parallel of lati-

tude.
5. The cosine-formula.

Let ABC be a spherical triangle (Fig. 3). Denote the sides BC,
CA, AB by a, b and ¢ respectively. Then, by our definition, the
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side @ is measured by the angle BOC subtended at the centre O
of the sphere by the great circle arc BC. Similarly, b and ¢ are
measured respectively by the angles A0C and 40B. Let AD be
the tangent at A to the great circle AB and AE the tangent at
A to the great circle AC. Then the radius OA4 is perpendicular to
AD and AE. By construction, 4D lies in the plane of the great
circle AB; hence, if the radius OB is produced, it will intersect
the tangent AD at a point D. Similarly, the radius OC when
produced will meet the tangent AE in E. Now the spherical
angle BAC is defined to be the angle between the tangents at 4
to the great circles 4B and AC, so that the spherical angle
BAC = DAE. The spherical angle BAC will be denoted simply
by A, so that DAE = 4.

Now, in the plane triangle 0AD, OAD is 90° and AOD,
identical with A@B, is ¢. We have then

AD=0Atanc; OD=0A4secc ... (3)
From the plane triangle O4AE we have, similarly,
AE = OA tanb; OE = 0OAsecd ... (4).

From the plane triangle DAE we have
DE* = AD? + AE?— 24D.AE cos DAE,
or DE? = 0A? [tan®c¢ + tan? b — 2 tan b tan ¢ cos 4]

From the plane triangle DOE,
DE? = OD* + OE® — 20D.0E cos DOE.
But DOE = BOC = a;
. DE? = 0A*[sec? ¢ + sec? b — 2 sec b sec ¢ cos a]

Hence, from (5) and (6),
sec®¢ + sec?h — 2secbsecceosa
= tan?¢ 4+ tan2b — 2 tan b tan c cos 4.
Now sec?¢ = 1+ tan? ¢, sec?b = 1+ tan?b,
and after some simplification we obtain

cosa=cosbcosc +sinbsinccos A ...... (A)

This is the fundamental formula of spherical trigonometry and
it will be referred to in the following pages as the cosine-formula
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or formula A. There are clearly two companion formulae; they

are . .
cosb=cosccosa +sincsinacos B ...... (7),

cosc =cosacosh +sinasinbecosC ... (8).

From the three formulae—A, (7) and (8)—all the other formulae
of spherical trigonometry in use can be derived. The funda-
mental formula has two direct practical applications:

(1) If two sides, e.g. b and ¢, and the included angle A of a
spherical triangle ABC are known, formula A enables the cal-
culation of the third side a to be made.

(2) If all three sides are known, the angles of the triangle can
be found successively by means of A, (7) and (8).

For suppose the value of A is required; then by A

cos 4 = cosec b cosec ¢ [cosa — cosbcosc] ...... 9).
Formula (9) can be replaced by one more suitable for logarithmic

calculations as follows. Since cos 4 = 1 — 2 sin? 4— we have.

2’
from A,
cosa=cosbcosc+sinbsinc(l—2sin2%>
. N
=cos(b——c)—2smbsmcs1n2§,
. N |
or cos(b—c)-—cosa=2smbs1ncs1n2-2—;
2sina+(b_c)sina'_(b_c)=2sinbsincsin2é.
2 2 2
Let sbe defined by  os 4454 L. (10).
Then a+b—c=2(s—c) and a—b+c=2(s—b).
Hence sin (s — b) sin (s—c)=sinbsincsin2‘g;
. .4  /[sin(s—b)sin(s—c)
S.osing = snbone (11).

This form is useful in numerical work. There are two similar

. ... . B . C
equations giving sin 3 and sin 3

If we write cos 4 = 2 cos? %1 — 1in the formula A and procecd
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as before, we shall obtain

cos 5= \/ sm;jlzlsfn_c @9 (12)
with two similar equations giving cos g and cos 3"
From (11) and (12) by division we have
A \/sm (s—b)sin(s—¢) (13).
sin s sin (s — a)

There are two similar equations, giving tang and tan% .

Any one of (11), (12) and (13) can be used to calculate 4, the
three sides being known.

6. The sine-formula.

We shall now derive what is known as the sine-formula. From
the cosine-formula A, we have

sin b sin ¢ cos A = cos a — cos b cos ¢.
By squaring, we obtain
sin2b sin?c¢ cos? 4 = cos2a — 2 cosa cos b cosc + cos? b cos? c.
The left-hand side can be written
sin2 b sin% ¢ — sin? b sin2c¢sin? 4,
or 1—cos?b—~— cos?c+ cos?bcos?c— sin?bsin®csin? 4.
Hence
sin?b sinZcsin? 4
=1— cos2a— cos?b — cos®c+ 2 cosacosbcosec.
Let a positive quantity X be defined by
X2sin?2a sin?b sin%e
=1-—cos?a — cos?b — cos2¢c+ 2cosacosbcose.
Then, from the previous equation,
sin?d
sin?a

80 that X =% - sin 4
sina
But in a spherical triangle the sides are each less than 180°,

and this applies also to the angles. As sin 8 is positive for all
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values of 8 between 0° and 180°, the minus sign in the above
equation is inadmissible, and we have
sin A
" sina’

By treating (7) and (8) in a similar way, we shall obtain
_sinB_sinC

sinb sinc’
Hence sinA_sinZ _sinG veeren(B).

This result we shall refer to as the sine-formula or formula B.
Formula B gives a relation between any two sides of a triangle
and the two angles opposite these sides. It has to be used, how-
ever, with circumspection in numerical calculations; for, suppose
that the two sides a and b and the angle B are given, then by B

. sina sin B
sin 4 = ———-—,
sin b

from which the value of sin4d can be calculated. But
sin (180° — A4) = sin A, and without further information it is
not possible to decide which of the two angles 4 or 180°— 4
represents the correct solution. The analogous ambiguity in
plane trigonometry may be recalled to the reader’s attention.

7. The analogue formula.
Write equation (7) in the form
sincsing cos B=cosb — cosccosa
= cosb — cosc (cosbcosc+ sinbsinccos 4)
=sin®ccosb —sinbsinceosccos 4.
Hence, dividing by sin ¢, we have
sinacosB=cosbsinc—sinbcosccosA ...(C),

a relation involving all three sides and two angles.
We can easily prove in a similar manner, beginning with
equation (8), that
gsinacosC=cos¢sind —sinccosbeos 4 ...(14).

Aswehave seen, the cosine-formula A gives cos a in termsofb, ¢
and the included angle 4. Formulae C and (14) are, in some
ways, analogous to A as they give sin a x cosine of one of the
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two angles B and C, adjacent to the side a, in terms of b, ¢ and
A. We shall, therefore, refer to formula C or (14) as the analogue
formula.

The formula G can also be proved as follows. Suppose the
side ¢ of the triangle ABC to be less than 90° (the case when ¢ is
between 90° and 180° is left as an exercise to the student).
Produce the great circle arc BA to D so that BD is 90° (Fig. 4).
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Fig. 4.

Then AD = 90° — ¢ and CAD = 180° — 4. Join Cand Dby a
great circle arc and denote it by z. From the triangle DAC,
by A,

cos z = cos (90° — ¢) cos b + sin (90° — ¢) sin b cos (180°— 4),
or
cosx =sinccosb — coscsinbcos 4 eereea(15).
From the triangle DBC, by A,
cos z = ¢os 90° cos @ + sin 90° sin a cos B,
or cos = sina cos B
and therefore from (15) and (16)
sinacos B=cosbsinc —sinbcosccos 4,
which is formula GC.

veeee(16),
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8. The four-parts formula.

Another useful formula, known as the four-parts formula, will
now be derived. In the spherical tri- A
angle A BC (Fig. 5) consider the four
consecutive parts B, a, C, b. The
angle C is contained by the two ;
gides a "and b and is called the
“inner angle”. The side a is flanked
by the two angles B and C and is
called the “inner side”. Introduce B
B and C by means of the cosine- a Y
formula; then we have Fig. 5.

cosb=cosacosc+sinasinccos B ...... (1),
cosc=cosbcosa +sinbsinacosC ...... (18).
Substitute the value of cos ¢ given by (18) on the right-hand side
of (17); then
cos b = cosa (cos b cosa + sin b sin a cos C) 4 sin a sin ¢ cos B}
*. cosbsin®a = cosasin bsinacos C + sin a sin ¢ cos B,
Divide throughout by sin a sin b; then

o

. sin ¢
cotbsina =cosacosC + S 08 B.

in b
But by the sine-formula B,
sinc_ sin O
sinb sin B’
Hence cosacosC=sinacotb-sinCcotB ...... (D),

which may be put into words, as an aid to the memory, as
follows:
cos (inner side).cos (inner angle)
= sin (inner side).cot (other side)
— sin (inner angle).cot (other angle).

9. Alternative proofs of the formulae A, B and G.

The formulae B, G and D have been derived by algebraic
transformations of the fundamental formula. Another proof of
each of A, B and C will now be briefly obtained from a simple and
instructive geometrical construction. Let ABC (Fig. 6) be a
spherical triangle and O the centre of the sphere. Join O to the
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vertices and take any point P in OC. From P draw P@ perpen-
dicular to O4 and PR perpendicular to OB. In the plane OAB,
draw @S perpendicular to O4 and RS perpendicular to OB. These
perpendiculars meet in S. Join PS and OS. If we draw tangents
at 4 to the great circle arcs AB and AC, these tangents, by
definition, include the spherical angle 4. But @S and QP are by
construction parallel to these tangents. Hence POS = A.
Similarly PRS = B. Also COB = a, COA = b and AOB = c.

0] Q
Fig. 6.

The first step is to prove that PS is perpendicular to the plane
AOB. By the construction, O is perpendicular to both PQ and
@S ; hence 0@ is perpendicular to the plane P@S; therefore OQ
is perpendicular to PS which is a line lying in the plane PQS.
Similarly, OR is perpendicular to PS. Thus PS is perpendicular
to both OQ and OR and is therefore perpendicular to every line
in the plane of 0@ and OR, that is, PS is perpendicular to the
plane OA B and, in particular, to 08, §€ and SR. Thus PQS and
PRS are right-angled triangles.

(1) We have, from the right-angled triangles OQP and ORP,
P@Q=0OPsinb; PR=0Psina
0Q = OPcosb; OR=O0Pcosa ......(20).

Let  denote the angle SOQ; then ROS =c¢ — .

Now 08 = 0Qsecx and OS = ORsec (¢ — z).

Hence OR cosz = 0Q cos (¢ — z);

~. by (20), OP cosacosx = OP cosbcos (c — x);
. cosa = cos b cos ¢ 4 cos b sin ¢ tan z.
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But ta.nx=%g=Pro—5SA=tanbcosA,
and hence cosa = cosbcosc + sin bsin ¢ cos 4,
which is formula A.
(2) Again, from the right-angled triangles P@S and PES,

P8 = PQsin PQS = P@sin A,

and PS = PRsin PRS = PRsin B.
Hence P@sin A = PR sin B,
and .. by (19),

OPsin bsin A = OP sin a sin B,
from which formula B follows.
(3) We have, from the right-angled triangles 0SQ and OSRE,
@S = OSsinz and RS = OSsin (¢ — z);
., RSsinz = @8 (sin ¢ cos z — cos ¢ sin z),

or RS = @8 (sin ¢ cot  — cos¢).
Now RS = PRcos B= OPsinacos B,
and QS = PQcos A =0OPsinbcos A,
and QS cotz=0Q = OPcosb.

Hence sina cos B = cosbsinc —sinbcosccos 4,

which is formula C.

10. Right-angled and quadrantal triangles.

When one of the spherical angles is 90°, the formulae A, B,
C and D assume simple
forms. This is also the case
when one side of a spherical
triangle is 90°—the triangle
isthensaid tobe quadrantal.
Rules have been given by
Napier according to which
the various simple formulae
can be written down. The
rules, however, impose an
additional charge on the
memory and it is much
gimpler to apply one of
the main formulae A to C-90°
D to the particular right- Fig. 7.
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angled or quadrantal triangle concerned. The rules are as
follows:

(1) Right-angled triangle in which €' = 90°. Arrange ¢nside a circle the five
“circular parts” a, b, 90° — 4, 90° — ¢, 90° — B, as in Fig. 7. If any one circular
part is chosen as a “middle”, the two flanking parts are called *“adjacents’” and
the two others the “ opposites”. The rules then are:

gin (middle) = product of tangents of adjacents;
sin (middle) = product of cosines of opposites.
(2) Quadrantal triangle in which ¢ = 90°. Arrange outside the circle (Fig.7)

the five “circular parts™ 4, B, 90° — a, C — 90°, 90° — &. The two rules are
then the same as for right-angled triangles.

11. Polar formulae.

Certain useful formulae can be obtained by means of the polar
triangle which is constructed as follows (Fig. 8). Let ABC be a
spherical triangle. The great circle of which BC is an arc has two
poles, one in each of the hemispheres into which the sphere is
divided by the great circle. Let A
A’ be the pole in the hemisphere
in which 4 lies. Similarly B’ and
(' are the appropriate poles of
CA and AB. Produce BC both
ways to meet 4’B"and 4'C’ in
L and M respectively. Then,
since 4’ is the pole of the great
circle LBC M, the spherical angle
B’4'C (or simply 4') is equal
to the arc LM. Again, B’ is the
pole of AC, that is, the angular
distance of B’ from any point on
AC is 90°; similarly the angular Fig. 8.
distance of A’ from any point on BC is 90°. Hence the angular
distance of C from B’ and from A’ is in each instance 90°; in
other words, C' is the pole of A’B’. Hence CL = 90°, and
similarly BM = 90°. Now LM = LB + BM = LB + 90°. Also
BC=ga; ;. LB=90°—a. Hence A’ = 180°— a. Similarly
B’ =180° — b and ¢’ = 180° — ¢c. We obtain in a similar
manner

e =180°—A4; b =180°— B; ¢ =180°~-C,
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Now apply formula A to the triangle A’ B'C’ and we have, for
example,

cos @’ == cos b’ cos ¢’ + sin b’ sin ¢’ cos 4.
Using the relations just found, we obtain from this equation

— ¢o8 A = cos B cos C — sin B sin C cos a,

which 18 a formula for the triangle ABC, giving the angle 4 in
terms of the two remaining angles and the included side. The
procedure in this instance can be extended to any of the principal
formulae which we have already derived, by writing 180° — a
for A, 180° — b for B, etc., in the formulae A to D.

12. Numerical example.

To illustrate the numerical solution of a spherical triangle, we
shall consider the following problem. In Fig. 9 let 4 and B
represent two places, in north latitude, on the surface of the
earth; their latitudes are re-
spectively 24° 18’ N and 36°
47" N, and their longitudes
133° 39 E and 125° 24’ W
respectively; it is required to
find (i) the length of the great
circle arc AB, (ii) the angle
PAB, P being the north pole,
and (iii) the most northerly
point on the great circle 4B.

PAH@ is the meridian
through 4 cutting the equator
in H. HA measures the lati-
tude of 4, i.e. HA = 24° 18’,
PA is the colatitude of A4;
o PA=90"-24°18 = 65°42". Fig. 9.

Similarly PB = 53°13". Let the Greenwich meridian intersect
the equator in §. Then, following the arrows,

GH = long. (E) of 4 = 133° 39,
and GK = long. (W) of B = 125° 24’,
Hence the arc HGK = 259° g,
and therefore HK (the shorter of the two great circle arcs
joining H and K) is 100° 57’; that is APB = 100° 57°. In the

P
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triangle APB we now are given the two sides P4 and PB and
the contained angle 4P B,

(i) Calculation of AB. By formula A, we have
cos AB = cos PA cos PB + sin PA sin PB cos APB,
which becomes, on inserting the data,
cos AD = cos 65° 42’ cos 53° 13’ — sin 65° 42" sin 53° 13’ cos 79° 3’

= M —N.
We shall use five-figure logarithms.
log cos 65°42-0 T1-61 438 log sin 65° 420 1-95 971
logcos 53°13-0 1-77728 log sin 53°13"-0  1-90 358
oo log M = 139 166 logcos 79° 3.0 1-27 864
. log N = 1-14193
s M =024641; s N =013 865.
Hence cosAB=M —~ N =0-10 776;

. AB=83°48"-8 = 5028'-8

Thus the great circle distance between 4 and B is 83° 48'-8 or
5028:8 nautical miles. To the nearest minute of arc, 4B = 83°49’.
(ii) Calculation of PAB. By formula A,
cos PB = cos AB cos PA + sin ABsin PA cos PAB,
In this equation, all three sides PB, AB, P4 are now known and
hence we can derive PAB. In this instance simple geometrical
considerations show that PA B is less than 90° and consequently
the sine-formula B can be used without ambiguity; the appro-
priate equation is

sin PAB — sin APB.sin PB

sin AB ’
all the quantities on the right-hand side being now known.
However, for purposes of illustration, we shall calculate PAB by
means of formula (11). Denote AB by p, PB by a and PA by b;
then

25— p+a+ b= 83°49 + 53° 13" + 65° 42’ = 202° 44",
Hence ¢=101°22"; s—p=17°33"; s—b=35°40",
In this instance, formula (11) is written

sin A \/ sin ( )sin (s — p)

sin b sin p
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logsin (s — b) =logsin  35°40" 1-76 572
logsin (s — p) =logsin 17°33" 1-47 934
logcosecdb  =logcosec 65°42" 0-04 029
logcosecp  =logcosec 83°49" 0-00 253

*. log sinz‘—z‘1~ =T1.28 788
s log sin‘; = 1-64 394
4 o gr
5 =26°8
A =52°16".

(iif) Calculation of the most northerly latitude reached by the
great circle AB. Let C be the most northerly point on AB
(Fig. 9). Then it is evident that the parallel of latitude through
C will touch the great circle at C and that the meridian PC will
be perpendicular to the great circle A8 at C. Thus POA and
PCB are each 90°. In the triangle PAC, we now know PA, PAC
and PCA and it is required to find PC. Clearly, formula B can

be used; it is sin PO sin PA
sin PAC ~ sin PCA’
and, since P4 = 90°, we obtain
sin PC = gin PA sin PAC
logsin PA =logsin 65°42' 1-95 971
log sin PAC =logsin 52° 16’ 1-89 810
*. logsin PC = 1-85 781
. PC=46°T7.
Thus the latitude of C is 43° 53'.
The calculation of the longitude of C is left as an exercise to
the reader.

13. The haversine formula.
Many calculations are appreciably shortened by the use of

“haversines . The haversine of an angle 6 (written hav ) is
defined by

hav@ =} (1—cos §) = sinzg ...... (21).

Since cosf=1-— 2sinzg, we have

cos§=1—2hav8 ... (22).
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We can now modify formula A, which is

cos a = cos b cos ¢ + sin b sin ¢ cos 4.
According to (22) write (1 — 2hava) for cosa, and
(1 - 2 hav A4) for cos 4. Then

1— 2hava=cos(b— c)— 2sin b sin ¢ hav 4.

Write 1 — 2 hav (b — ¢) for cos (b — ¢). Then we obtain

hava=hav(b~c)+sinbsinchavA ...... (23},
which is the form of the fundamental formula expressed in
terms of haversines.

From the definition in (21), hav @ is always positive and
hav (— 6) = hav 6.

The haversines and log haversines of angles from 0° to 180°
are found in some collections of mathematical tables among
which may be mentioned Inman’s Nautical Tables (J. D. Potter,
156 Minories, London, E. 1), which, in addition to the usual
logarithmic and trigonometrical tables (to five figures), contain
several other tables of astronomical value.

The ca,lcu]a.tior} of the side A B (Fig. 9) by means of haversines
will now be given in order toshow the convenience of the method.
We write (23) as follows for the triangle PAB:

hav AB = hav (PA — PB) + sin P4 sin PBhav APB
= hav (P4 - PB)+ X
log hav APB =log hav 100° 57’ T1-77450
logsin PA =logsin 65°42" T1-95971
logsin PB =logsin 53°13' T1-90358
s log X = 163779
. X =0-43 430
hav (PA — PB) = hav 12° 29’ = 0-01 182
.. hav AB =0-44 612
. AB = 83°49,
which agrees with our result on p. 17.

14. Another method.

When two sides and the contained angle of a triangle are
given, the following method is sometimes used when it is
required to find the third side and one of the remaining angles.




20 SPHERICAL TRIGONOMETRY

To illustrate the method we shall find AB and PAB (Fig. 9).

Denote AB by p, PB by a, PA by b and APB by P. Then
a=53%13", b= 65°42" and P = 100°57".
By formulae A, G and B, we have

cosp =cosacosb +sinasinbeos P ...... (24),
sin pcos A = cosasind — sinacosbecos P ...... (25),
gin psin 4 =sinasin? ... (26).

Define d (a positive quantity) and D by
cosea=dcosD ... (27),
singcos P=dsin D ... (28).

Hence we can write (24)—(26) as follows:
cosp=dcos(b—D) ... (29),
ginpcosd =dsin(b—-D) ... (30),
ginpsind =sinasin P ... (31).

(i) From (27) and (28), by division,

tan D= tanacos P = ..... (32),

from which D can be calculated.
(ii) From (30) and (31),

sin @ sin P
tand =~ TS 6= D)
which, by inserting the value of d given by (28), becomes
tan A = tan P sin D cosec (b— D) ...... (33),

from which 4 can be calculated.
(iii) From (29) and (30),
tan p = tan (b — D)sec 4  ...... (34),
from which p can be calculated.

The calculations.
1) logtana =logtan 53°13" 0-12 631
log cos P =log cos 100°57° 1.27 864 n
.. logtan D = 1404951
cos P is negative and we attach the letter » to its logarithm
to remind us of this fact. It follows that tan D is negative. We
have assumed in formulae (27) and (28) that d is a positive
quantity. Then, from the given values of a and P, it follows that
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cos D is positive and sin D is negative; thus D ig in the fourth
quadrant, and from the value of log tan D which we have found

we obtain 5y s600 _ 14° 156 — 345° 444,
Hence
b—D =65°42"— 345° 44’4 = — 280°2'-4 = 79° 57"-8,
(ii) logtan P =logtan 100°57°  0-71 338n
log sin D =logsin 345°44’-4 T1-39151n

log cosec (b — D) =log cosec 79° 57"-6  0-00 670
*. log tan 4 = 0-11 159
and, as 4 is less than 180°, we have
PAB = A = 52°169.
(iii)  logtan (b — D) =log tan 79° 576 0-75 192
log sec 4 =logsec 52°16"-9 0-21 340
L , .. log tan p = 0-96 532
;. AB =p=83°4Y,
agreeing with the previous calculations of 4B.

15. The trigonometrical ratios for small angles.

If @ is a small angle and expressed in circular measure, we have
the well-known approximate formulae:

gin § = fradians; cosf = 1; tan @ = fradians

veeenn(35)
Now 1 radian = 57° 17" 45"
= 3437%
= 206265,
w_ 1 .
8o that 1" = 306965 radian,
' 1 : "
and 1" = 338 radian, approximately.

Hence, by the first equation of (35), when 6 is successively 1”
and 1', 1

206265

1
3438

sin 1" = verenn(36),

and ginl’ = veeees(37).
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If 8" denotes the number of seconds of arc in 8 radians, then

9“’
b= 556368 and consequently
sin 6 = LA
" 206265°
which may be written
- sin §’ = 8" sin 1" esees.(38).
Similarly, sind =68 sinl’ woree(39),

where 8 is expressed in minutes of are.
In a similar way, we find
tan 6 = 8" sin 1",
In spherical astronomy, certain angles are frequently ex-
pressed in terms of hours, minutes and seconds of time,
according to the following relations:

24 hours = 360°; 1t = 15°; 1™ =15 and 15= 15"

eeeen. (40).

Thus we obtain the approximate formulae
sin 1m = sin 15" = 15sin I cerns.(41),
sin1* =sin 15" = 15sinl1” ... (42).

If H is a small angle, which, when expressed in minutes of
time, will be denoted by H™, then

sin H = Hmgin 1® = 156Hmsin 17 ......(43).
Similarly, if we express H in terms of seconds of time, we have
sin H = H&sin 18 = 156H®sin 1" ...... (44).
These results will be of use in subsequent chapters.

18. Delambre’s and Napier's analogies.

For reference, we give the following formulae, originally due
to Delambre, and known as Delambre’s analogies:

sin §csin § (4 — B) = cos §Csin (@ ~ &} ...... {45),
sinfccos$ (A - B)=siniCsini{a+d)...... (46),
cos jesin } (4 + B) = cos }Ccos  (a— b)...... (47),
cosjccos3 {4+ B)=siniCcosd(@a+b)...... (48).

These formulae are easily derived from the principal formulae
already discussed in the previous pages.
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Taking these equations in pairs, we obtain Nagier’s analogies:

1(A-B
tani(a+b) = (cig%;ET—%Z_?; tanlec ... (49),
inli(4-B
tan % (a - b) = z;n]:%:f; tan %C ...... (50),
1(q—
tan i (4 + B) =%§ cotiC ... (51),
tan } (4 — B) = :2 i P z i 2; 0t 30 eeennn(52)
EXERCISES

1. In the spherical triangle ABC, C =90°, a=119°46’36" and
B = 52° 25’ 38”. Calculate the values of b, ¢ and A.

[Ans. 48° 26’ 49", 109° 14’ 0" and 113° 10’ 46”.]

2. Inthe triangle ABC,a = 57° 22’ 11”7, b = 72° 12’ 19" and C = 94° 1" 49",
Calculate the values of ¢, A and B.

[Ans. 83° 46’ 32", 57° 40’ 45" and 72° 49" 50”.]

3. In the triangle’ ABC, ¢ =90°, B = 62°20'42 and a = 136°19’0".
Calculate the values of 4, C and b.
[Ans. 139° 46’ 137, 69° 14’ 45” and 71° 18’ 9.

4. Two ships X and Y aresteaming along the parallels of latitude 48° N and
15° S respectively, in such a way that at any given moment the two ships are
on the same meridian of longitude. If the speed of X is 15 knots,* find the speed
of Y.

5. A and B are two places on the earth’s surface with the same latitude ¢;
the difference of longitude between A and B is 2l. Prove that (i) the highest
latitude reached by the great circle 4 B is tan—! (tan ¢ sec 1), and (ii) the distance
measured along the parallel of latitude between 4 and B exceeds the great
circle distance AB by

2 cosec 1’ [l cos ¢ — sin~? (sin I cos ¢)] nautical miles.
6. The most southerly latitude reached by the great circle joining a place 4

on the equator to a place B in south latitude ¢ is ¢;. Prove that the difference
of longitude between A and B is 90° + cos™! (tan ¢ cot ¢,).

7. The positions of 4 and B are respectively: Lat. 39° 20’ S, Long. 110° 10’ E
and Lat. 44° 30’ 8, Long. 46° 20’ W. Show that, if a ship steams from 4 to B
by the shortest possible route without crossing the parallel of 62° S, the distance
steamed is 5847-6 nautical miles.

* The knot is the unit of speed in use at sea; it is 1 nautical mile per hour.
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8. If the elements a, b, ¢, 4, B, C of a spherical trianigle receive increments
da, ... dC, show that, if
ngﬁnA =sinﬁB _sinC
gina sinb sine’
da = cos C.db + cos B.dc + K sinbsinc.d4d,
db =cos d.dc+cosC.da+ Ksincsina.dB,

de = cos B.da + cos A.db + K sin a sin b.dC,

d4 = — OOSO.dB—OOSb.dC""Il(

sin Bsin C.da,
dB = — cosa.dC — cosc.dA +-Ilfsin05in_4.db,

dC = — cos b.dA -cosa.dB+%sinAsinB.do.

9. Prove that two sides of a spherical triangle are equal if and only if their
opposite angles are equal.

ABC is an equilateral spherical triangle in which small displacements are
made, in the sides and angles, of such a nature that the triangle remains
equilateral. Prove that

da _ edeot?
dd T P g%

[Glas. 1967.]



CHAPTER IT
THE CELESTIAL SPHERE

17. Introduction.

In Chapter 1 we have seen that positions on the surface of the
earth are completely specified by reference to two principal
great circles, the Greenwich meridian and the equator. The
principle of specifying positions on the celestial sphere is fun-
damentally similar and there are several methods depending on
the particular great circles chosen as the principal circles.
These methods will now be described.

18. Altitude and azimuth.

Let O—the observer on the surface of the earth (supposed
spherical)—be the centre of the celestial sphere (Fig. 10). Let Z
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Fig. 10.

(the zenith) be the point on the celestial sphere vertically over-
head—its direction can be defined by means of a plumb-line.
OZ is thus the continuation of the straight line joining the earth’s
centre to O. The plane through O at right angles to OZ is the
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plane of the horizon, cutting the celestial sphere in the great
circle NAS, called the celestial horizon or simply the horizon.
Thus, in Fig. 10, the horizon divides the celestial sphere into two
hemispheres, of which the upper is the visible hemisphere, the
lower being hidden from the observer by the earth. Let X be
the position of a star on the celestial sphere at a given moment.
Any great circle drawn through Z is called a vertical circle; in
particular, the vertical circle in Fig. 10 passing through X is
ZXA. In the plane of ZXA, the angle 40X or the great circle
arc AX is called the altitude, which will be denoted by a. Since
0Z is perpendicular to the plane of the horizon, the great circle
arc Z4 is 90°; hence ZX = 90° — a. ZX is called the zenith
distance (z.D.) of the star X and will be denoted by 2. Thus

2=90—a . (1).

Let LXM be a small circle through X parallel to the horizon;
it is called a parallel of altitude and is such that all heavenly
bodies, whose positions at a given instant lie on this small circle,
have the same altitude and also, by (1), the same zenith distance
as X. Thus if the altitude or zenith distance of a star is given, the
parallel of altitude on which it must lie can be definitely specified.
To define its position completely on the celestial sphere, the
particular vertical circle on which it lies must also be specified.
This is done as follows.

Let OP be parallel to the axis about which the earth spins.
If the latitude of the observer is north (as in Fig. 10), the position
P is called the north celestial pole, or simply the north pole. We
are not directly conscious of the earth’s rotation, but the effect
is shown in the apparent rotation of the celestial sphere. The
stars thus appear to travel across the sky and their altitudes and
directions are continually changing. In the northern hemisphere
there is, however, one star, visible to the naked eye, which
appears to change very little. This is Polaris, or the north pole
star, whose direction in the sky is very nearly that given by OP.
If there happened to be a star exactly situated at P on the
celestial sphere, its altitude and direction would be invariable
throughout a night. We define the vertical circle through P.
that is ZPN (which cuts the horizon in N), as the principal
vertical circle and the point N as the north point of the horizon
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The point § on the horizon exactly opposite to N is the south
point; the west (W) and east (E) points* have directions at right
angles to the directions of NV and 8 (% is not shown in Fig. 10).
The points N, E, S and W are called the cardinal points.

We now specify the position of a star X on the celestial sphere
at a given moment by reference to the horizon and the principal
vertical circle ZPN. If the star is in the western part of the
celestial sphere (as in Fig. 10), the spherical angle PZX (which
is formed by the principal vertical circle and the vertical circle
through X) or the great circle arc N4 is called the azimuth (V).
If the star is in the eastern part of the celestial sphere, as in
Fig. 11, the angle PZX
or the arc N B is the azi- Z
muth (E). Thus at any
instant the position of
a heavenly body on the
celestial sphere can be
described completely by
reference to the horizon
and the north point of the
horizon in terms of alti-
tude and azimuth (E or
W) or, alternatively, in
terms of zenith distance
and azimuth. When the
azimuth is 90° E or 90°
W, the star is said to
be on the prime vertical, which is thus the vertical circle through
the east point £ or the west point W.

Since in Figs. 10 and 11 the angle POZ (or the great circle arc
PZ) is equivalent to the angle between the radius of the earth
which passes through the observer’s position and the earth’s

axis, then POZ (or PZ) is equal to the colatitude of the observer
or PZ=90°-¢ ... (2),

where ¢ is the observer’s latitude. Also PN = 90° — PZ = ¢;
hence the altitude of the pole is equal to the observer’s latitude.

Fig. 11.

* The positions of W and E relatively to N and § are obtained from the considera-
tion that, if the observer faces north, the west point is towards his left hand and the
east point towards hus right hand.
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19. Declination and hour angle.

As in the preceding section, suppose that the celestial sphere
is drawn for an observer O in latitude ¢, showing the horizon,
the zenith Z and the north pole P (Fig. 12). The great circle
RWT whose plane is perpendicular to OP is the celestial equator
and its plane, clearly, is parallel to that of the earth’s equator.
The celestial equator and the horizon intersect in two points W
and E. Now Z is the pole of the great circle NW S and P is the
pole of the great circle RWT'; hence W is 90° from both Z and P

Fig. 12.

and therefore is 90° from all points on the great circle through
Z and P. In other words, W is the pole of the great circle
NPZSQ; hence NW = 90° and W = 90°. Similarly EN = 90°
and ES = 90°. Hence W and E are the two remaining cardinal
points, N and S having been previously defined explicitly.

As already stated, the rotation of the earth results in an
apparent rotation of the celestial sphere from east to west about
OP. It follows that, as the stars are at such great distances from
the earth, the angle between the straight line joining the observer
at O to any particular star and the straight line OP (parallel to
the earth’s axis) remains unaltered. If we consider a star X, the
earth’s rotation makes it appear to describe a small circle LX M,
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parallel to the celestial equator, in the direction indicated by the
arrows in Fig. 12, Let PXDQ@ be the semi-great circle through
X and the poles of the celestial sphere. Then the arc DX is called
the declination of the star and is north declination if the star is
between the celestial equator and the north pole P (as for the
star X). The star’s declination is south (as for Y) when it is
between the celestial equator and the south pole @. Declination
is thus analogous to latitude as defined for points on the earth’s
surface. Denote the declination of X by 8; then DX = § and
PX = 90° — 6. PX is called the north polar distance (N.p.D.) of
the star. It is convenient to treat declination as an algebraic
quantity, so that the various formulae to be derived will hold
equally for north and south declinations. North declinations
carry the positive sign (+) and south declinations the negative
sign (—). Thus the formula for north polar distance, viz.
N.B.D. = 90° — 8, is applicable to all stars, whatever their de-
clinations may be.

The declination of a star being known, we can thus specify a
small circle, called the parallel of declination, on which it must
lie. To fix completely its position on the celestial sphere at any
moment we require another great circle of reference. This is the
semi-great circle PZRS(Q, called the observer’s meridian. When
the star is at L on the observer’s meridian, it is said to fransit or
culminate, and it is clear from Fig. 12 that its altitude (that is
SL) is then greatest and its zenith distance ZL is least. There-
after, owing to the earth’s rotation, it moves along the small
circle LF M crossing the horizon at F where it is said to set; its
altitude at F is of course 0° and its zenith distance is 90°.
During an interval of time depending on its declination, the star
is below the horizon, reaching its maximum depression below
the horizon at M ; eventually it reaches the horizon at G where
it i3 said to rise. Its altitude gradually increasing, it returns
after an interval, equivalent to that in which the earth makes a
complete rotation about its axis, to the observer’s meridian at L.
At any moment the star’s position on the parallel of declination
is specified by the angle at P between the observer’s meridian
and the meridian (PX Q) through the star at this time; this angle
is RPX or ZPX or the arc RD on the equator. This angle, de-
noted by H, is called the hour angle and is measured from the
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observer’s meridian westwards from 0° (at L) to 360° (when the
star again returns to the observer’s meridian) or, as is more usual,
from Ob to 242, We can express this in a slightly different way.
When the star is in transit, its meridian coincides with the
observer’s meridian; thereafter, the star’s meridian moves
steadily westwards and, when it has made a complete circuit of
the celestial sphere, it has described an angle of 360° or 24 with
reference to the observer’s meridian. From Fig. 12 it is seen that
if the star is west of the observer’s meridian, that is, if the

Fig. 13.

azimuth is west, its hour angle is between 0° and 180°, that is,
between Ot and 12b, Similarly, if the star is east of the meridian
(azimuth east)—as in Fig. 13—the hour angle is between 128 and
24b, We thus have the rules:

If the star’s azimuth is west, the hour angle is between 0b and 12%
(and vice versa); if the star’s azimuth is east, the hour angle is
between 12t and 240,

20. Diagram for the southern hemisphere.

The diagrams described so far in this chapter refer to the
c2'astial sphere for an observer in north latitude. We shall now
describe the corresponding diagrams for an observer in the
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southern hemisphere. In Fig. 14, we shall place the observer’s
zenith as in the previous diagrams. The celestial horizon is then
as indicated. In the southern hemisphere, the south celestial
pole @ is above the horizon. Then, if ¢ denotes the southern
latitude of the observer, QZ = 90° — ¢. The principal vertical
circle is now ZQS, intersecting the horizon in the south point S.
The north point N can then be placed in the diagram. The
celestial equator and the horizon intersect in the west and east
poiuts W and £ (the latter is not shown in Fig. 14) according to

the rule in the footnote to page 27. Consider a star X with
south declination. Owing to the earth’s rotation it will describe
a small circle LXM, parallel to the celestial equator and lying
between the celestial equator and the south pole Q. At L, the
star will have its greatest altitude—it is then on the observer’s
meridian, which is the semi-circle QZRNP. In consequence of
the earth’s rotation the star will move from the observer’s
meridian westwards, that is, in the direction LX M, as indicated
by the arrows in the diagram. The angle ZQX is the hour angle
measured, as before, from 05 to 24b westwards from the observer’s
meridian. QZX is the azimuth; in this instance it is west. If §
is the (negative) declination of the star, then DX = —& and
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QX = 90° + 8. The other parts of the spherical triangle QZX
are: QZ = 90°— ¢, ZX = z (the zenith distance), QZX = 4
(the azimuth) and ZQX = H (the hour angle). When the star’s
azimuth is west, the hour angle is between 0t and 128, When the
star’s azimuth is east, the appropriate diagram can be similarly
drawn; this is left as an exercise to the student; it will then be
found that the hour angle is between !2R and 242. The rules
stated at the end of section 19 are seen to hold for southern as
well as northern latitudes.

21. Circumpolar stars.

Consider the celestial sphere for an observer in northern
latitude ¢ (Fig. 15). The parallels of declination are drawn for
two stars X and Y, both of which are always above the horizon
and consequently do not set. Such stars are called circumpolar

Fig. 15.

stars. It is readily seen from the figure that the condition that
a star should not set is: PM must be less than PN ; that is, the
north polar distance must be less than the latitude, or, in other
words, the declination must be greater than the colatitude.
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When the star X is on the observer’s meridian at L, it is at
wpper culmination or in transit; when the star reaches M, itis at
lower culmination. The expressions “culmination above pole”
and “culmination below pole” are frequently used. At upper
culmination, the star’s zenith distance is ZL or (PL — PZ), that
is, ¢ — 8. Atlower culmination, the star’s zenith distance is ZM
or (ZP + PM), that is, 180° — (¢ + 8). When § = ¢, the star’s
upper culmination occurs in the zenith. When § > ¢, the upper
culmination occurs between P and Z, as for the star Y ; then the
azimuth does not exceed 90°, as can be readily inferred from the
diagram. Southern circumpolar stars can be considered in the
same way.

22. The standard or geocentric celestial sphere,

In the previous sections, the declination of a star on the
celestial sphere whose centre is the observer has been defined.
As the stars are at distances almost infinitely great compared
with the dimensions of the earth, the star’s declination or polar
distance so defined is inde-
pendent of the observer’s
position on the surface of
the earth, asmay bereadily
seen from Fig. 16. (It is
more convenient for our
present purpose to deal
with the star’s north polar
distance than with its de-
clination.)InFig.16, P,CQ,
is the earth’s axis of rota-
tion, C being the centre of
the earth; O is the ob-
server and COZ the direc-
tion of the zenith at O; OP
is parallel to CP, and the
direction of a star that is
transiting at O is OX. By definition, the north polar distance of
the star for an observer at O is POX. If CY is drawn parallel to
0X, then CY is the direction of the star with reference to C, the

earth’s centre. Thus Pl(f' Y = POX ; in otherwords the north polar

Fig. 16.
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distance of the star (and consequently its declination) is the same
on the celestial sphere centred at O (or any other position on the
earth’s surface) as it is on the celestial sphere centred at C. But
when a comparatively near body such as the moon, or sun, or a
planet is observed, the definition of north polar distance (and
therefore of declination) previously given is dependent on the
particular position of the observer on the earth. Thus if M is the
moon (Fig. 16) at the distance r from the centre of the earth, it
is evident that POM = PléM + OMC; also OMC clearly de-
pends on the position of O, whereas P,C M isentirely independent

Fig. 17.

of 0. Plé'M is defined as the north polar distance of M which is
thus the angle between the earth’s axis and the straight line
joining the earth’s centre to the heavenly body. This definition
is entirely general and is applicable to every heavenly body.
Accordingly, the centre of the standard celestial sphere (or the
geocentric celestial sphere, as it may be called) is taken to be at
C, the earth’s centre (Fig. 17). CZ is the direction of the ob-
server’s zenith, the diameter QCP is coincident with the earth’s
axis, N WSE is the celestial horizon (the great circle whose plane
is perpendicular to CZ), and RWTE is the celestial equator (its
plane is coincident with the plane of the earth’s equator). The
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arc PX is the north polar distance of the heavenly body ac-
cording to the definition just given and DX is the declination 3
(¥.p.D. = 90° — §). The observer’s meridian is PZRSQ, the
zenith distance of the heavenly body is ZX (denoted by z) and
the azimuth 4 (PZX ) and the hour angle H (ZISX) are as
described previously. The declinations of the principal heavenly
bodies (moon, sun, planets and the brightest stars) are tabulated
in the Astronomical Ephemeris (the American and British
publication) and in the other national ephemerides.

Hereafter, the celestial sphere will be assumed to be as in
Fig. 17, that is, centred at C, the earth’s centre.

23. Solution of the spherical triangle PZX.

We shall consider two common problems associated with the
triangle PZX.

(i) Given the observer’s latitude ¢, the declination 8 and hour
angle H of the heavenly body, to calculate its zenith distance
and azimuth, By formula A (the cosine formula), we have, since
two sides PZ and PX and the contained angle ZPX are given
(Fig. 17),

cos ZX = cos PZ cos PX + sin PZ sin PX cos ZPX,
or cosz=gin¢sind + coscosdecos I ... (3).
Thus z can be calculated directly from (3) or by means of the
haversine formula (section 13), which in this instance can be

written hav z = hav (¢ — 8) + cos ¢ cos § hav H ...... (4).
Again, by A,

c0s PX = cos PZ cos ZX + sin PZ sin ZX cos PZX,
or sin § = sin dcosz+ cos psinzcos 4 ..., (5),

from which the azimuth 4 can be calculated. In the haversine
form (5) may be written

cos ¢ cosa hav A = hav (90° — 8) — hav (¢~ a) ...(6),
where a is the altitude.

(ii) Given the observer’s latitude ¢, the star’s zenith distance
and azimuth, to calculate the star’s declination and hour angle.
We are given ¢, z and 4; hence, by (5), we can calculate the
declination. Kither equation (3) or (4) is available for calculating
the hour angle H. Thus from (3)

cos H = coszsecpsecd—tanptand ...... (7).
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Consider now the spherical triangle PZX in Fig. 13. The angle
PZX is the azimuth (east). Remembering that the hour angle
is measured at the pole from the observer’s meridian westwards,
we see that ZPX = 248 — H. The solution of the triangle
proceeds as before.

24. Right ascension and declination.

In the hour angle and declination method of specifying a star’s
position on the celestial sphere only one co-ordinate, namely
declination, remains constant as the star travels across the sky,
whereas the hour angle increases uniformly from 0t to 242, But

Fig. 18,

the positions of the stars on the celestial sphere may be likened
to the positions of fixed points on the surface of the earth and
can therefore be specified with reference to the celestial equator
and any particular star on the equator. For example, in Fig. 18,
let 7 be an equatorial star and X any other star; let the meridian
through X cut the celestial equator in D. As the stars pass
across the sky we know in particular that the declination of X,
that is, DX, remains constant and that the relative configuration
of the stars also remains constant. It follows that 7D is con-
stant; in other words, that the angle between the meridians of
T and D remains constant., We may regard 7 as a reference
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point on the celestial equator; with respect to T and the celestial
equator, we can clearly specify the position of the star X by
means of the great circle arc 7D and the declination DX. The
reference point chosen in practice is called the vernal equinox or
the first point of Aries, and it is convenient to regard the position
of 7 as specified by a particular star in the sky. Later we shall
define 7 more precisely. The arc 7’D or TPX is called the right
ascension (R.A.) of the star X (denoted by «) and is measured
eastwards from T from Ot to 24b (in the direction of the arrow
near 7T'). This direction is opposite to that in which hour angle is
measured. From Fig. 18, we see that R = RD + TD. Now RD
(or RPX) is the hour angle H of X and RT is the hour angle of 7.
The hour angle of 7 is called the sidereal time (s.r.). We have,

accordingly, o4 time = mA. X + RAL X veernn(8),

or st.=H+e¢ ... (9).

When 7 is on the observer’s meridian, the hour angle of T is 0b,
that is to say, the sidereal time is 0b. When 7 is next on the
observer’'s meridian, an interval of 24b of sidereal time has
elapsed. This interval is, of course, the same as that required
for the complete rotation of the earth about its axis and it is
called a sidereal day. The rotating earth is, in fact, the standard
time-keeper.

25. The earth’s orbit.

The earth is a planet revolving around the sun in an elliptical
path or orbit, the sun being situated at a focus S of the ellipse
(Fig. 19). This is Kepler’s first law of planetary motion. The time
required for the earth to make a complete revolution of its orbit
is a year. As the earth progresses in its orbit, the direction of
the earth, as viewed from the sun, is continually altering; the
angular velocity is, however, not uniform. Since our observa-
tions are made from the earth, then relative to the earth the sun
appears to describe an elliptical orbit around the earth. In
Fig. 20, C is the centre of the earth and the ellipse represents the
apparent orbit of the sun relative to the earth. The sequence of
positions of the sun, namely a, e, f, b, g in this orbit, corresponds
to the sequence of positions 4, E, ¥, B, G of the earth in its orbit
round the sun (Fig. 19). In the course of the year, the sun thus
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appears to make a complete circuit of the heavens against the
background of the stars. The plane of the orbit is called the
plane of the ecliptic, and the great circle in which this plane
intersects the celestial sphere, whose centre is the earth’s centre
C, is called the ecliptic. In Fig. 21, let C be the centre of the
celestial sphere on which the celestial equator TTR and the

A

F

/@

Fig. 18,

Fig. 20.

north pole P are drawn. We may imagine that the stars can be
viewed from the centre of the earth, that is, from C, and ac-
cordingly they will occupy definite positions on the celestial
sphere in Fig. 21. With reference to the stars, the plane of the
ecliptic will have a definite position and, consequently, the
ecliptic will be a particular great circle, which is found from
observations to be inclined at an angle of about 234° to the
celestial equator. In Fig. 21, YT MU represents the ecliptic and
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its inclination to the celestial equator is M T'R, which is known
as the obliguity of the ecliptic. Relative to the earth, the sun
appears to move on the celestial sphere along the ecliptic—in
the direction Y7 M—and twice yearly, at T and at U, its position
on the celestial sphere coincides with the intersections of the
ecliptic with the celestialequator. Between 7 and M and between
M and U the sun is on the north pole side of the equator; its
declination is then north. Similarly between U and Y and

Fig. 21.

between Y and 7 its declination is south. The position 7, at
which the sun’s declination changes from south to north, is the
vernal equinoz. 1t is in this way that the reference point 7', from
which are measured the right ascensions of the stars, is obtained.
Thus if X is a star, its right ascension is 7D or @ measured along
the equator from 7’ eastwards, and its declination § is DX. From
the diagram it is seen that the right ascension and declination of
the sun are both changing continually. When the sun is at 7,
its right ascension and declination are both zero (this occurs
about March 21-—the vernal equinox); at M the right ascension
is 62 and declination about 23}° N (this occurs about June 21—
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the summer solstice); at U the right ascension is 122 and declina-
tion 0° (this occurs about September 21—the autumnal equinozx)
and at Y the right ascension is 18? and the declination about
233° S (this occurs about December 21—the winter solstice).

26. Celestial latitude and longitude.

The position of a heavenly body can be referred to the
ecliptic as fundamental great circle and the vernal equinox 7 as
principal reference point. In Fig. 21 K is the north pole of the
ecliptic and KX A is a great circle arc passing through X and
meeting the ecliptic in 4. The arc 74, measured from 7 to 4
along the ecliptic in the direction of the sun’s annual motion,
i.e. eastwards, is called the longitude of the heavenly body X and
is measured from 0° to 360° round the ecliptic. The arc AX is the
latitude and north latitude is considered positive and south nega-
tive. If we know the star’s right ascension and declination we can
obtain its latitude (B8) and its longitude (A) from the triangle
KPX; and vice versa. Now T is the pole of the great circle
KPMR; hence KPr = 90°, and since 7D = rPX = a, then
KPX = 90°+ a. Also PK? = 90°, and since 74 = TKX = ),
then PKX = 90° — A. Also PX = 90°— & and KX = 90° — B.
Let e denote the obliquity of the ecliptic; it is the angle between
the radii CM and CR; thus the arc RM = ¢. But KM = 90° and
PR = 90°; hence KP = e. Applying the formulae A, B and C,

we have s KX = cos PX cos KP + sin PX sin KP cos KPX,

sin KX sin PKX = sin PX sin KPX,
sin KX cos PKX = cos PX sin KP — sin PX cos KP cos KPX,

or gin B =sin§ cose — cos dsinesing...... (10),
cos fecosA=cosdcosa ... (11),
cos Bsin A =sindsine + cosdcosesing...... (12).

By a similar process, the right ascension « and the declination
3 can be expressed in terms of 8, A and . The formulae are

sin 8 = sin B cos € + cos Bsin e sin A,
c0s 8 cos @ = cos B cos A,

cos dsin @ = — sin Bsin € + cos S cos e sin A,
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27. Sidereal time.
Let the earth and the celestial sphere (centred at C) be drawn
asin Iig. 22; let g denote the position of Greenw ich on the earth’s
surface and I that of any other place. The angle between the
meridians plg and pgq is, of P
course, the longitude (terres- '
trial) of [; in this instance [ is |
west of Greenwich. Produce :
Cyg, Cl to meet the celestial !
sphere in G and L. Then G ;
and L are thezenithsof Green-
wich and ! respectively. If X
is the position of a heavenly
body on the celestial sphere

at a given moment, GPX is
the hour angle of X for an
observer on the Greenwich

meridian and LPX is the hour Q
angle for an observer on the Fig. 22.

meridian of I. But GPX = LPX + GPL and GPL = gpl; hence
H.A. of X at Greenwich = H.A. of X at [ + long. (W) of !

In this formula we suppose that the longitude of ! is expressed
in time-measure (15° = 18; 15’ = 1m; 15" = 15), The formula (13)
is a general one and it clearly holds for the vernal equinox 7.
We thus obtain—since sidereal time is the hour angle of 7—

Sid. time at Greenwich = Sid. time at [ + long. of [ ...(14),
the + sign being taken when [ is west of Greenwich and the
— sign when s east of Greenwich. The sidereal time at [ is called
the local sidereal time (L.S.T.).

28. Mean solar time.

The sidereal day is an observatory unit of time and is ob-
viously unsuited to the regulation of everyday affairs which in
the main are governed according to the position of the sun in
the sky. When the sun is on the meridian of a place, it is
apparent noon there; when the sun is next on the meridian, an
apparent solar day is said to have elapsed. This interval can be
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measured, for example, by means of a clock keeping accurate
sidereal time and it is found that an apparent solar day is not
constant. We have seen that, relative to the earth, the sun
appears to describe an elliptic orbit around the earth and the
rate at which its direction in the orbit changes is not constant.
It follows that the sun appears to describe the ecliptic at a non-
uniform rate; in other words, the sun appears to move somewhat
irregularly against the background of the stars. Due to this and
also to the fact that it is moving in the ecliptic and not along the
celestial equator (the fundamental great circle with which the
measurement of hour angle or time is associated) its right ascen-
sion does not increase uniformly. The average apparent solar
day throughout the year is called a mean solar day and it is
convenient to define the mean solar day as the interval between
two successive transits across the observer’s meridian of a
fictitious body called the mean sun. The mean sun is assumed to
move in the celestial equator at a uniform rate around the earth.
This rate is such that the mean sun completes a revolution in
the same time as that required by the sun for a complete circuit
of the ecliptic. According to this definition, the right ascension
of the mean sun (denoted by R.A.M.s.) increases at a uniform rate.

Now if we regard the mean sun as an ordinary celestial body,
then at any given moment, we can assume that it has a particular
hour angle (H.4.M.8.) at a given place on the earth’s surface. At
this moment we shall assume that its right ascension is known;
hence by (8) or (9),

Sid. time = H.A.M.S. + R.AM.S. ... (15).

The time shown by a mean time clock, say, at Greenwich at any
moment is simply related to the value of H.a.M.8. there, and if
the R.A.M.s. is known, (15) forms the basis of comparison between
the sidereal and the mean time clocks. The mean sun is related
to the true sun according to certain principles which will be
discussed in a later chapter. Meanwhile it will be sufficient to
state that the difference at any moment between the right
ascension of the mean sun and of the true sun can be calculated;
this difference is called the equation of time* (denoted by E). We
thus have E=RAMS. —RA ©

* In older text-books the equation of time is defined by £ = R.A. ® = B.A.M.S,,
but the convention of (18) is generally adopted.
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in which R.A. ® denotes the right ascension of the true sun.
E can be positive or negative and varies in a complicated manner.
The detailed computation of E is discussed in section 91. In
Fig. 23, let us suppose that at a given instant the right ascension
and declination of the sun (®) are known. Let 7" be the vernal
equinox at this instant so that RPT or RY is the hour angle of 7,
that is, the local sidereal time. If this is known, the position of
7 on the celestial sphere can be definitely specified. The position
of the sun can then be indicated on the celestial sphere.
PK = R.A. @ and K @ is the sun’s declination and both of these

are supposed known. Suppose the value of E is positive; then
by (16), R.a.M.5. is greater than R.A. @, and if E is known the
position of the mean sun M at this instant can be indicated in
the diagram. RPM or RM is the hour angle of M (H.A.M.8.).
It is clear from Fig. 23 that, as EK = RM + MK, then
HA.®@=HAMS.+ E ... 1),

which is an important relation connecting H.A.M.8. and H.A. @,
enabling us to calculate the hour angle of the sun (1.A. ®) when
the other quantities are known. When the mean sun is on the
observer’s meridian, it is local mean noon there. When the mean
sun is on the meridian of Greenwich, it is Greenwich mean noon.
The hour angle of the mean sun at Greenwich will be denoted in
this book by c.M.A.T. (Greenwich mean astronomical time). When



44 THE CELESTIAL SPHERE

the mean sun is at T—the H.A.M.S. being then 12P—it is said to
be mean midnight. When ¢.M.A.T. =12, it is mean midnight at
Greenwich and this is the moment when a new civil day at
Greenwich begins. Mean time reckoned from midnight at Green-
wich is called Greenwich Mean Time (6.M.T.)*, now designated
Universal Time (u.t.). It is clear that

U.T.=G¢MT.=GM.A.T. 4120 .. (18).
Similarly, for any place keeping the mean time appropriate to
its meridian, we shall have
Local m.T.=Local Mm.a.T.+120 ..., (19)
=H.AMS.+120 (20).

Formula (14) gives the relation between sidereal time at
Greenwich and the sidereal time at any place I, and it is clear
from Fig. 22 and from (18) and (19) that we shall have a similar re-
lation between mean time at Greenwich and the mean time at the
place; it is

U.T.=G6.M.T.=Local Mm.T. +long. of I ...... (21),
the + sign being taken when the longitude of I is west and the
— sign when the longitude is east.

Confusion would be inevitable if every place kept the local
mean time appropriate to its meridian, and so in small countries
a standard mean time is chosen, corresponding to a particular
meridian of longitude (the standard meridian), which is in use
uniformly throughout the country. In Great Britain, the
standard mean time is ¢.M.T. In extensive countries such as
Russia and the United States of America, two or more standard
times are in use in zones of longitude; within each zone, a stan-
dard time appropriate to a definite meridian within the zone is
kept. The standard time, based on a particular meridian, we
shall designate zone time (z.T.). This system is, in effect, kept by
ships at sea which are generally less troubled by geographical
complications. We have, as in (21),

U.T.=6.M.T. =Z.T. x long. of standard meridian ...{(22).

* Before 1925, a.m.T. was used in the almanacs to gignify Greenwich mean
astronomical time (G.M.A.T.). Beginning with 1925, the time used was G.M.T.
(=g.c.T.) later superseded, as stated above, by U.T. Recently, for reasons stated in
Appendix E (p. 424), v.T. has been replaced in the almanacs by Ephemeris Time
(E.T.). The difference between U.T. and E.T. is so slight that we shall use the former
generally, unless otherwise stated.
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29. Ezxample.

We shall use as an illustration the following problem of a
common and important type. At a placeinlongitude 163° 14’ E,
it is required to calculate the hour angle of the sun (H.A. ®)
corresponding to an observation made at zone time 8b 46m 22s
on 1975 March 10; the zone time is that of the standard meri-
dian of 165° E (11 E).

The first step is to derive the U.T. at which the observation
was made. We have

Zone time 8t 46m 228  March 10

Long. of standard meridian — 110
U.T.=21h 46m 225 March 9

We subtract 11 from the zone time in accordance with formula

(22). (Clearly, we can write the zone time as 32" 46m 22s
March 9.)

We next find the local mean time (that is, the mean time
corresponding to the longitude of the place) by means of (21).
U.T. 21b46m 228 March 9
Long. of place (E)+ 108 52m 568
Local m.t. =32k 39m 188 March 9
= 8b 39m 188 March 10

Formula (20) enables us to write down the H.a.M.s. (the hour
angle of the mean sun af the place); it is
H.A.M.S. =200 39™ 188,

The next step is to apply the equation of time to H.a.:LS.
From the Astronomical Ephemeris it is found, by interpolation,
that at U.T. 21t 46m 228, March 9, B = —10™ 368,

Thus, by (17), H.A. ® = 20h 39m 185 — 10m 368,
or H.A. @ = 20b 28m 428,

30. Hour angle of a heavenly body.

To calculate the hour angle of any heavenly body (X) other
than the sun, we proceed as follows. By (8) and (14) we have
LS.T. = HA. X+RA. X

and G.8.T. = LS.T. /,
whence HA.X+RA. X=GS.T.+! . (23).
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In the Astronomical Ephemeris, the Greenwich sidereal time is
tabulated at O u.r. for each day throughout the year. Since,

by (15
y (13), Sid. time =H.A.M.S. + R.A.M.S.,

we have

R.AM.S. at U.T. 0" for any day = the tabulated Greenwich
sidereal time at U.T. O! for that day — 12,

The R.A.M.S8. increases uniformly of the rate of 3™ 568-56 per mean
solar day or at the rate of 98-856 per mean solar hour ; by means of
this we can calculate the r.A.M.8. for any given U.T.

Tables are given in the almanacs for facilitating this cal-
culation.

The use of the formula (23) is best illustrated by means of an
example. It isrequired to calculate the hour angle of Betelgeuse
(« Orionis) at zone time 18k 35m 468 on 1975 January 26, in a
place whose longitude is 64° 28’ 49" W. (Zone + 41: this means
that the standard meridian of the zone is 42 W or 60° W.)

Zone time 18h 35m 468 January 26

Zone + 4b
U.T. 22h 35m 468 January 26
Sid. time correction 3m 43s (3m 568-56 per day)
22h 39m 298
G.8.T. at O® U.T. 8h 18m 398  From A.E.

G.8.T. 30h 58m (8s
Longitude of place (W) — 4h 17m 558
LST. 260 40m 138

Subtract r.A. of Betelgeuse 5h 53m 498 From A.E.

H.A. of Betelgeuse = 20h 46m 24s

31. Rising and selting.

Consider Fig. 24. The heavenly body X is said to set at F, the
point where it reaches the horizon. Then the zenith distance is
90°, that is, ZF = 90°. Let H be the hour angle of X at setting,
so that ZPF = H. Also PF = 90°—3. Let 4 be the azimuth
at setting (PZF) and ¢ the latitude,
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From formula A,
cos ZF = cos PZ cos PF + sin PZ sin PF cos ZPF,

or cos 90° = sin ¢ sin & + cos ¢ cos d cos H,
80 that, as cos 90° = 0,
cos H=—tandtand ... (24),

from which the hour angle at setting can be calculated.
Also from A,

cos PF = cos PZ cos ZF + sin PZ sin ZF cos PZF,

or sin § = 0 + cos¢cos 4,
whence cosd =sindsecd ... (25),
from which the azimuth at setting can be calculated.

Z

Fig. 24,

In north latitudes, it is seen either from the equations (24) and
(25), or from Fig. 24, that if the declination is north the hour
angle at setting is between 61 and 12k and that the azimuth is
less than 90° (that is to say, the body sets between west and
north); and that if the declination is south, the hour angle at
setting is between OP and 6" and the body sets between south and
west. The problem as it concerns the rising of a heavenly body
can be treated in a similar way. When the observer’s latitude is
south, the procedure is similar.
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If the heavenly body concerned is a star, the hour angle at
setting gives the interval between meridian transit and setting
expressed in sidereal time. If the heavenly body is the sun, the
interval between meridian transit and setting is expressed in
apparent solar time. But during this interval the relative
positions of the sun and the mean sun will alter but little (in
other words, the change in the equation of time can be usually
disregarded unless extreme accuracy is desired), and so the
interval can be described, for all practical purposes, in terms of
mean time. Thus, if from formula (24) the hour angle H at
setting is found to be 72 30m, then the interval between the sun’s
meridian transit and setting is 7t 30m mean solar time. Leaving
out of consideration any change in the sun’s declination, we infer
that this is also the interval between sunrise and meridian
passage. Thus the sun is above the horizon for 15® and below the
horizon for 92, Actually, of course, the sun’s declination is
generally slightly different at sunrise from that at sunset owing
to its motion along the ecliptic and the effect can be calculated.

Formula (24) shows that if ¢ > 90° — 3, cos H is, numerically,
greater than unity, so that the equation fails to give a value of H.
In this instance, the sun does not set in latitudes and on days
such that ¢ > 90° — 8, as may also be verified from a diagram.
On midsummer day, the sun’s north declination is greatest; it
is then 23}° N approximately, so that in latitudes north of
661° N, the sun is above the horizon on that day without
setting.* At the north pole, since ¢ > 90° — 8, provided & is
north, the sun is above the horizon continuously between
March 21 and September 21; for the remaining six months it is
below the horizon. The parallel of 661° N is called the Arctic
Circle and the corresponding parallel in the southern hemisphere
(661° S) is the Antarctic Circle.

32. Rate of change of zenith distance and azimuth.

Let X in Fig. 25 be the position of a heavenly body on the
celestial sphere at a certain instant and Y its position a little
later. Assume the declination to be constant so that X and ¥
lie on the small circle LM (the parallel of declination), of which
P is the pole. Draw the great circle arcs PX, PY,ZX,ZY. Let

* Hence the expression, the midnight sun.
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UX be an arc of a small circle of which Z is the pole; then
ZX =ZU. Let ZPX = H and ZPY=H+ AH, so that
XPY = AH. Let PZX= A and XZY = A4; ZX =z and
ZY =2+ Az. Then UY = Az. Since XY is supposed to be a
small arc, we may assume that UXY is a plane triangle, right-
angled at U.

Fig. 25.

As the heavenly body moves, owing to the diurnal motion,
from X to Y its zenith distance increases by Az, its hour angle
by AH and its azimuth decreases by A4.

By formula (1) of section 3 (p. 4),

XY = XPY sin PX = AH cos$5,
and UX = XZYsinZX =AAsinz.

Let n denote the angle PXZ; 4 is called the parallactic angle.
Then, since Y is very close to X, we may take PYZtobe 7. Then
UY=XYcosUYX,

and UX=XYsinUYX,
Now P1Z = 7 and PYX = 90°; hence
UY =A2=AHcos 8sinn,
and UX =AAsinz=AH cos3cos.
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Now in the spherical triangle PXZ, by formula B,
cos § sin n = sin 4 cos ¢,
and, by formula C,
cos § cos 7 = sin ¢ sin z — cos ¢ coszcos 4.
Hence Az =AHsginAcos¢ . (26),
and A4 = AH (sin ¢ — cos pcotzcos 4) ...... (27).

In these formulae, AH, Az and AA are supposed expressed in
circular measure. Let AH® denote the number of seconds of time
in AH radians; let Az”/, AA” denote the number of seconds of
arc in Az, AA radians respectively. Then, by the principles
of section 15, p. 22,

Az =Az"sin1"; AAd=AA"sinl1"; AH = AH®sin 18,
and, since sin 18 = 15 sin 1", we have
Az = 15AH®.sin A cos ¢,
AA4" = 15AH® (sin ¢ — cos ¢ cot z cos 4).

If AH® = 1 second, these equations express respectively that the
zenith distance increases at the rate of 15 sin 4 cos ¢ seconds of
arc per second of time and that the azimuth is decreasing at the
rate of 15 [sin ¢ — cos ¢ cot z cos A] seconds of arc per second of
time.

If the heavenly body is a star, the rates of change of zenith
distance and of azimuth are expressed in terms of seconds of arc
per second of sidereal time; in the case of the sun, the rates are
in terms of seconds of arc per second of apparent solar time or
with sufficient accuracy, of mean solar time.

The results just obtained can be easily derived by calculus
methods, as follows. From the triangle PZX, by formula A,

cos z = sin d sin ¢ + cos § cos ¢ cos H,

in which 8 and ¢ are supposed constant. By differentiation

. dz .
gin z —— = cos § cos ¢ sin H,

dH
By B, sin z sin A = sin H cos 8 eeee.(28);

o ‘%21 = sin 4 cos ¢ veeee.(29),
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which is essentially the same as (26). If z and H are expressed
in terms of seconds of arc and seconds of time respectively,

dz
77 = 15sin 4 cos ¢.

Differentiate (28)—in which z, 4 and H are variables—with
respect to H. Then

d4
smzcosAm— cos H cosd — sin 4 COSZEH

= cos I1 cos 8 — sin? 4 cosz cos ¢,
by means of (29).
Also, by C,

c0s 8 cos H = cos 2z cos ¢ — sin zsin ¢ cos 4;

a4 oo
.. sinzcos 4 di = cos? 4 coszcos ¢ — sinzsin pcos 4

dA

S dHS T (sin ¢ — cot z cos A4 cos ¢),
or, if A and H are expressed in seconds of arc and seconds of
time respectively, this last formula becomes

da .
=" 15 (sin ¢ — cot z cos A4 cos ¢),

which is that already derived.

33. Twilight.

After the sun has set, indirect sunlight, reflected and scattered
by the upper atmosphere, still continues to illumine the earth,
diminishing however as the sun sinks farther below the horizon.
When the sun is 18° below the horizon (its zenith distance is
then 108°) this indirect illumination has become quite negli-
gible. The interval between sunset and the time when the sun’s
zenith distance has increased to 108° is called the duration of
evening twilight. In a similar way, we define the duration of
morning twilight. The duration of evening twilight, for example,
can be calculated as follows. In Fig. 26, LF M is the sun’s parallel
of declination (as no great accuracy is required in this particular
calculation, we ignore changes in the sun’s declination during
the particular day concerned) and JGK is a small circle, parallel
to the horizon, every point of which is 108° from Z. This small
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circle intersects the parallel of declination in G. Then the interval
of time required for the sun to travel from F to @, that is FPG,
is the duration of evening twilight. Now FP@ = PG ~ ZPF;
as ZPF is the hour angle of sunset it can be calculated by
formula (24). Now in the triangle ZPG, we have: ZG = 108°,
PZ = 90° — ¢ and PG = 90° — 3; hence, by A,
cos 108° = sin ¢ sin 8 + cos ¢ cos & cos zba,

which enables the calculation of ZP@ to be made. The value of 3,
used in this formula, depends of course on the particular day of

Fig. 26.

the year concerned. Thus the duration of evening twilight is
found.

It is clear from Fig. 26 that evening twilight will come to an
end if NM is greater than NJ, in other words, if at apparent
midnight the sun is more than 18° below the horizon. Now
NI'=90°—¢ and MT =8; .. NM = 90°— ¢— 8. Hence
evening twilight ends if 90°— ¢ — 8 > 18°, or if 8 < 72° — ¢.
For example, in latitude 60° N, twilight will end if 8 < 12°.
When 3§ is greater than 12°, the sun’s zenith distance is less than
108° between sunset and apparent midnight, and also between
apparent midnight and sunrise; therefore, in 60° N it is never
completely dark on those days of the year when the sun’s
declination exceeds 12° N. These days are between April 23 and
August 22.
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EXERCISES
[Symbols used:
¢ = latitude of observer, z = zenith distance,
A = azimuth of heavenly body, € = obliquity of the ecliptic.]

H = hour angle,

1. If 2, and 2, are the zenith distances of a star on the meridian and on the
prime vertical respectively, prove that

(i) cotd = cosecz, seczy — cot z,,
(ii) cot¢ = cot z, — cogecz, cos z,,
where 5 is the star’s declination. [Lond. 1929.)

2. If ¢ is the angle which a star’s path at rising makes with the horizon,
prove that

€08 ¢ = sin ¢ sec 3.
3. If h, H are the hour angles of a star, of declination + 8, on the prime

vertical (west) and at setting respectively, for a place in north latitude, show

that cos h cos H + tan? 8 = 0.

Calculate the interval (correct to 0-1 minute of mean solar time) for a place

in latitude 36° N between the passage of Aldebaran (declination +16°22’)
over the prime vertical (west) and its setting. [Lond. 1926.]

4. A boattravelling at 5 knots is steered continually towards a star. Prove
that the distance travelled towards the west is approximately § (z,° — 2,°) sec ¢
wiles, where z,° and z,° are the initial and final zenith distances, in degrees, of
the star and ¢ the mean latitude, [®.T.1017.]

5. If the colatitude is C, prove that
C = z + cos™! (cos z sec y),
where tan x = cot & cos H,
8in y = cos & sin H,
H being the hour angle.

6. Find to the nearest second of mean solar time the interval between the
passages across the meridian of two stars whose declinations are 60° N and
60° S, and whose distance apart is cos™ (— §). (Assume that 1 year is 365}
days.) [M.T.1923.]

7. If the declination § of a star is greater than the latitude ¢, prove that the
star’s greatest azimuth east or west is

8in~! (cos & sec ¢).

8. At u.r. 21t 56m on 1927 March 28 a bright star was observed through
a break in the clouds as follows: altitude {approximate) 37° 10'; azimuth 136°
West. The observer’s position was: lat. 50° N, long. 7° 15" W. Identify the star.
(The R.a.m.8. is Ob 21m approximately.) [{Lond. 1927.]
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9. The r.a. and declination of Capella at upper transit at Greenwich on
1930 May 30 were 5% 11m and + 45° 55”. Find the altitude and azimuth of the
star at the same instant at New York, Columbia University Observatory,
Latitude 40° 49’ N, Longitude 4® 56= W,

10. In north latitude 45° the greatest azimuth of a circumpolar star is 45°
(east or west). Prove that the star’s declination is + 60°.

11. If the latitude ¢ and the declination of a star be known, show that the
error in the deduced value of the hour angle caused by an error of size Az in
the zenith distance is Azcosec A sec ¢, where A is the star’s azimuth.

12. If the cbserver increased his latitude by an amount A¢ while the hour
angle of a star increased by AH, show that the change in altitude is

Ad cos A — AH sin 4 cos ¢.

13. a and a + Aa are the altitudes of the sun observed simultaneously at
two neighbouring places on the same meridian. If ¢ is the latitude of one of
the places and 3 is the sun’s declination, prove that the difference of latitude
between the places is approximately

Aa cos a cos ¢/(sin & — sin a gin ¢). [Ball.]

14. Two stars (a, 8) and (a’, §’) are observed at the same moment on the
same vertical circle. If H is the hour angle of the first star, prove that

cos (x + H) = tan ¢ cos y cot 3,

where x is given by
s
tan }(a— o — 2 = P (=9

= gin (5 9) Ot H@ — o)

15. If z is the length of the shadow cast on level ground by a vertical pole
at apparent noon at an equinox, and if y is the length of shadow cast by the
same pole at the summer solstice when the sun is on the prime vertical, show

that z =ytany tang,

where sin ¢ = sin € cosec ¢. [Lond. 1928.]
18. A straight wall of height % runs in the direction 8 degrees west of south.

Prove that at an equinox the wall casts no shadow when the sun’s hour angle

H is given by tan H = sin ¢ tan 0,

and that at apparent noon the breadth of the shadow is A tan ¢ sin 4.

17. An observer in latitude 50° sees a star set due west behind a low ridge
a mile away, which slopes down to the north at an inclination of 30° to the
horizontal. Prove that by stepping a yard to his right he will see the star foi
about 22 seconds longer, [M.T. 1913.

18. Two places are in the same latitude and the polar distance of the grea
circle through them is equal to the sun’s declination. Prove that at these place.
the length of the night is equal to their difference of longitude.
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19. Let a, 8 be the co-ordinates of a star with respect to a great circle S, and
a’, & the co-ordinates of the same star with respect to another great circle §".
If ¢ be the inclination of 8’ to § and if the ascending node of S” on § has co-
ordinates (4, 0) in the first system and (', 0) in the second, show that

cos 8’ cos (&’ — §') = cos 8 cos (a — 6),
€08 8’gin (a’ — 8’) = sin Ssint + cos & cos ¢ 8in (a — 6),
8in &' = sin 8 cos 4 — cos S sin i sin (a — B).

If a =75° 8 =15° 6= 215° 0’ = 115°, & = 23° 30, show that from the last
equations o’ = 327° 12/, & = 29° 0".

20. Show that if a is the altitude of the pole star, H the hour angle and p (in
seconds of arc) the polar distance, the latitude is approximately given by

¢=a—pcos H+ }p?sin® H tan a sin 1”.
21. A heavenly body (declination §) is at a small angle H from the meridian.
Prove that the zenith distance z is given approximately by
2 = ¢ -3+ ay = Qg
where o, (expressed in minutes of arc) is given by
2cosgeosd . H
@y = sm(¢ 5) sin’ cosecl
and ay = }a,% cot (¢ — 3)sin 1",

22. If a is the sun’s altitude in the prime vertical at a place in latitude ¢

and L is its longitude, prove that
¢ = sin~! (sin L sin e cosec a). [Ball.]

23. Prove that, in latitude 45°, the interval between the moment at which a

star’s azimuth is 90° east and the moment of setting is constant.

24. If 5 be a star’s declination and 4 its maximum azimuth, show that in
t seconds of time from the moment when the azimuth is A the azimuth has

changed by 3 15* sin 1" sin® § tan 4 seconds of arc.
25. If 5 is the parallactic angle and ¢ and § are constant, prove that

(4] dn = — 008 ¢ cos 4 cosec z;

dH
. 4%z dy
(ii) F170 —-chosscosm

i) 24 0os 8 cos z cos dz + sin zsin dy
W) = ~ g, \©02 % gy "
26. If H is the hour angle of a star at rising, show that
H cos(¢—3)
3 00819 T 9 )
tan 2 cos{$+39)
27. At a place in north latitude ¢, two stars 4 and B (declinations 8 and §,
respectively) rise at the same moment and A transits when B is setting. Prove

thas tan ¢ tan 8 =1 — 2 tan? ¢ tan? §,,
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28. If two stars (a, 8) and (a,, 8,) rise at the same moment at a place in
latitude ¢, show that
cot? ¢ sin? (o, — a) = tan®§ + tan® 3, — 2 tan & tan 8, cos (a, — a).
(Ball.]
29. Ata placein latitude ¢ the sun is observed to rise A hours before apparent
noon, and the next day it rises m minutes later. Its declination on the first day
is 8. Show that the distance in minutes of arc between the two points of rising

B 16m cos® § cosec ¢. [Coll. Exam.}

30. If evening twilight ends when the sun’s centre is 18° below the horizon,
show that at the equator the duration of evening twilight is given in hours by

1;? sin~1 (sin 18° sec 3).

Use this formula to calculate the duration of evening twilight at the summer
solstice. [Lond. 1930.]

31. Show that at a place in latitude ¢ the shortest duration of twilight,

expressed in hours, is #, sin~1 (sin 9° sec ¢),

where sin—1 (sin 9° sec ¢) is expressed in degrees. [Ball.]

82. If twilight begins or ends when the sun is 18° below the horizon, show
that all places have a day of more than twelve hours, including twilight, so long
as the declination of the sun is numerically less than 18°,

83. If the day is considered to begin and end when the sun is at an angle ¢
below the horizon, show that the shortest day will not occur at the winter
solstice if the latitude is less than $, where

sin ¢ = sin e sin 8,
and ¢ is the obliquity of the ecliptic. [M.T.1917.)

34. Assuming that the sun travels uniformly in the ecliptic, completing a
revolution in 365 days, show that the number of nights in which there is twilight
even at midnight at a place in latitude ¢ is the integer next greater than

§3cos™! {cos (¢ +18°)/sin ¢},
twilight beginning or ending when the sun is 18° below the horizon.
[Coll. Exam.]

85, If 0 denotes the sun’s depression below the horizon at the end of evening
twilight, and 7, n" the parallactic angles at end of twilight and at sunset
respectively, prove that the duration (T') of twilight is given by

2 sin® g cos?¢ =1— cos 8 cos (n" — q).

38. The right ascension of a star is 5 49m and its declination is + 7° 23/,
and the obliquity of the ecliptic is 23° 27’. Show that the longitude and latitude
of the star are respectively 87° 10, — 16° 2,

87. Two stars (a,, 8,) and (ay, 8,) have the same longitude; prove that

sin (o] — ag) = tan ¢ (cos e, tan 3 — 03 o4 tan §,).
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388. A star of right ascension a and declination 8 has a small latitude 8.
Prove that the longitude of the sun, when its R.A. is o, differs from the longitude
of the star by g sin 3 cot a approximately.

39. Show that the obliquity of the ecliptic can be determined by making
observation of the sun’s declination 8 at a noon near the summer solstice by
means of the formula e = 8 + ¢? sin 23, where ¢ is one-half the defect from a
right angle of the sun’s right ascension. [M.T. 1924.]

40. The pole of the Milky Way is at r.a. 122 48m Dec. + 27°, About what
dates will the sun pass through the Milky Way? (Obliquity of the ecliptic
= 23°27".) [AL.T. 1925.]

41. A star is displaced a small amount dr towards a point O on the celestial
sphere with equatorial co-ordinates (ay, 8,). Show that the resulting changes in
the star’s equatorial co-ordinates (a, 8) are given by

cosdda = cosdsin (a — ag) cosecrdr,
d3 = (cosd,ysindcos (a — ay) — 8ind, coss) cosecrdr,

where r is the arc length on the celestial sphere from the star to the point O.
[Glas. 1974.)

42. Prove that the zenith distance z of the north pole of the ecliptic is given
by
z = cos~1(cosesing — sinecos ¢sinT).

Here e is the obliquity of the ecliptic, ¢ is the latitude of the observer, and T is
the local sidereal time.



CHAPTER III
REFRACTION

34. The laws of refraction.

In astronomical observations, the light from the particular
heavenly body observed has to pass through the earth’s atmo-
sphere before reaching the observer, and during its passage aray
of light suffers a change in direction, owing to refraction, the
amount of which depends on the physical characteristics of the
atmosphere and on the altitude (or zenith distance) of the body
concerned. Itisthusnecessary,
at the outset, to eliminate from
the observations the effects of
our terrestrial atmosphere on
them. From the study of me-
teors thededuction is made that
the atmosphere extends to a
height of at least 100 miles, for
even at that height the friction
of the air on a rapidly moving
meteor is sufficient to render
it luminescent. But beyond a
height of about 40 miles the
air is so tenuous that it has
an inappreciable effect on the
course of a ray of light.

We shall first state the laws E
of refraction.

Consider (Fig. 27) a ray of Fig. 21.
light AB passing through a transparent medium M, (such as
air)and falling at B on a slab, with parallel plane faces, of another
transparent medium M, (such as glass). In the medium M, the
path of the ray will be along some such line as BC, different in
direction from 4 B; the ray is said to be refracted at B. Let YBX
be perpendicular to the slab at B. The angle ABX (denoted by 6)
is called the angle of incidence and the angle Y BC (denoted by ¢)

9|D
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the anzle of emergence. The laws of refraction are: (i), the inei-
dent ray AB, the rcfracted ray BC and the perpendicular at B
to the surface separating the two media M, and M, lie in the
same plane; (ii), the relation between ¢ and 0 is

sin 0

g{;(-ﬁ:[l'l ......(l),
u, being a constant depending on the optical properties of the
two media concerned. In this instance, y, is called the index of
refraction for the two media M, and M,; its value can be deter-
mined by laboratory experiment,

Let the ray BC now pass from the medium M, into the
medium M,. The angle of incidence is now ¢ and the angle of
emergence is . Then

sin ¢

S_El,b = [ ......(2),
where p is the refractive index for the two media M, and M,.
At D, we shall suppose that the ray emerges into the medium
M,. Its path DE in M is parallel to its original direction 4B in
the same medium. The path of the ray is reversible, that is to
say, a ray in the direction ED will be refracted, at the surface
between the media 3/, and M,, along DC. Hence

sin 8

glﬂ_lll =My seesse (3),
where p, is the index of refraction between the media 4/, and
M,. From (1) and (3), we have by division

sin ¢ _Ha
sing gy’
or By Sin ¢ = p,y sin eeeen(4).

It follows from (2) that p = po/p,.

Regarding M, as a standard medium, we can define g, simply
as the refractive index for medium M, and p, for medium M,,
and the values of p, and p, may be supposed known. Consider
now only the two media M, and M, in Fig. 27, BC being a ray
in M, incident at C on the bounding surface between M, and M,
and CD the rayin M,. ¢ is the angle of incidence, i the angle
of emergence, and the relation between ¢ and ¢ is given by
formula (4).
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85. Refraction for small zenith distances.

As the density of the air diminishes with increasing height
above the earth’s surface, it is convenient to regard the atmo-
sphere as made up of a large number of thin spherical layers,
concentric with the earth’s surface regarded as spherical,
throughout each of which the density and other physical
characteristics are uniform. The simplest case in the investiga-
tion of astronomical refraction occurs when the heavenly body
observed—for example, a star—is nearly overhead; in this

S
4
z M M
4 - P B
M, Y 7 Mn
C D
Rpa h 2
E Mn-—v " My
4
// K~zn_2
’
2 ’
M, m,
X Y
AT
Mo M,
(8] Earth’s Surface
Fig. 28.

instance we can ignore the curvature of the atmospheric strata
through which the rays from the star pass and thus we can
regard their bounding surfaces simply as a series of parallel
planes. Let there be n + 1 parallel layers (of which only a few are
shown in Fig. 28) and let AB be the upper effective limit of the
atmosphere beyond which the air, owing to its extreme tenuity,
is ineffective in causing refraction. Each layer hasits own optical
properties and, in particular, its own index of refraction. Let
the medium above 4B be denoted by M, the layer between CD
and AB by M,, and so on, with the corresponding refractive
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indices p, ft,, iy, -+ Mo, the last being the refractive index for
the lowest layer M. We can regard M as the standard medium
—effectively, it corresponds to a vacuum—and so we can put
p = 1. Let z denote the angle of incidence, at the surface 4B,
of a ray from the star that finally reaches the observer at O.
Then z is called the true zenith distance of the star; if there were
no atmospherical refraction the star would be seen by the
observer in the direction OT, which is parallel to PS. Applying
formula (4) we have for the successive pairs of layers the fol-
lowing series of equations (the notation is indicated in Fig. 28):
peinz = p, sinz,,
or, since p = 1, sinz = p, sin z,,
o8N 2y = p,_y8iN 2, _4;
Py SINZp_y = p, o8I0 Z, 5,

py 8inzy = pysin g,
in the last of which { is the angle between the direction of the
zenith OZ and the final element OQ in the path of the ray. {is
thus the observed zenith distance of the star. From these equa-

tions we have, clearly, sin z = g sin ¢ (5);
= o ...... ')

o is the index of refraction of the air at the earth’s surface.
From the first law of refraction it is evident that the path of the
ray through the various strata lies in a vertical plane. The values
of the refractive index increase from p in M continuously to
po in M, corresponding to the increase in the density of the
atmospherical layers from M downwards; accordingly, it follows
from (4) that the angles z, z,, 2,4, ... %, { form a decreasing
sequence and the path of the ray is thus bent in the way indi-
cated in the diagram. In particular {isless than z, that is to say,
the star is observed nearer the zenith than it would be if the
atmosphere were non-effective as regards refraction. The angle
z— { is called the angle of refraction; denote it by R. Then (5)

becomes sin ({ + R) = pysin ¢,
or sin £ cos B + cos { sin B = p,sin {.

Now Ris a small angle and we can write cos B = 1 and sin R= R
(R being supposed expressed in circular measure). Thus

sin { + Rcos { = pysin ¢,
or R=(py— 1) tan { eeerns(6).
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We thus have the result that, at small zenith distances, the angle
of refraction is proportional to the tangent of the observed
zenith distance. Now p, is the index of refraction of the air at
the surface of the earth, and its value will be dependent on the
density and temperature at any given time. The standard condi-
tions are taken in practice to be: barometric pressure = 760 mm
and temperature = 10° C.; the refraction is then called mean
refraction. For these conditions, x,— 1 is approximately 0-00029,
so that R is approximately 0-00029 tan { or, in seconds of arc,
206265 x 0-00029 tan {. The coefficient of tan { is more ac-
curately determined by means of astronomical observations
and the value usually adopted is 58”-2; we then have

R =58"2tan{.

The coefficient of tan { is called the constant of mean refraction;
denote it by k. Then Rektanl . ).

At any barometric pressure P (in mm Hg) and temperature 7' (in
degrees Centigrade), the corresponding refraction R’ in terms of
the mean refraction R is given by

E_oml L (8).

R 273+T
For many purposes, the formula (7) is sufficiently accurate for
zenith distances not exceeding 45°,

36. General formula for refraction.

When the zenith distance of the body observed is considerable,
the atmosphere through which the rays pass can no longer be
regarded as stratified in plane layers. Assume that the earth is
spherical and that the atmosphere is arranged in spherical layers.
In Fig. 29, let C be the centre of the earth, O the observer and
COZ the direction of his zenith. Let p', p be the indices of
refraction in two adjacent thin layers M’ and M. Let LP be
the section of aray in M’ which finally reaches the observer at 0.
At P it is refracted along PQ. Similarly, it is refracted at the
surfaces between successive layers and the final element of its
path is 70. If the layers are thin, the path of the ray is curved
and the direction in which the observer sees the object is along
OT, the tangent to this curve at 0. The observed zenith distance
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is thus ZéT, denoted by {. Draw the radii CP and CE. Let
GPL = ¢', QPF =, EQP = ¢. Then, since the radius CP is
perpendicular at P to the bounding surface between the layers
M' and M, by the laws of refraction we have

p'sing' =psing L (9).
Now from the triangle CQP, in which CP = ¢’ and CQ = r and
CQP = 180° — ¢, we have

rsing=r'sing ... (10).
Eliminate sin ¢ from (9) and (10); then
ru'sing =rusing ... (11).

This is a general relation Z
which holds for any two —]
contiguous layers and con-
sequently forany twolayers
whatever their heights
above the earth’s surface |
may be. If ry, py, ¢, denote

the values of r, pand ¢ for A
the lowest layer—next the
earth’s surface—we have, B
from (11), —

7 SiN ¢ = 7g pg SiN by .

But r, = a, the earth’s ra-
dius, and ¢, is simply the
angle ZOT or {, the ob-
served zenith distance,
Hence

ru sin ¢ = pyasin {

‘\\N

c

Fig. 29.

Consider now the angle through which the ray is deviated in its
passage from one layer through the next. Produce LP and PQ

to meet OZ in 4 and B respectively, and let ZAP and ZBP be
denoted by @’ and a. Then the angle through which the ray is
rafracted at Pis APBora’ — a; let it be denoted by AR, so that
AR=d¢—a = ... (13).
Let ACP = ¢ and BOQ = 6, and let
Ag=6-6 ... (14).



64 REFRACTION

Then, assuming that the layers are thin, we can write
QF = EP = rA8.
Also if 7' = r + Ar, then QF = Ar. In the infinitesimal triangle
EQP right-angled at E, we have
EP 1rAf
QE = —A—T- ------
Now, a' =6+ ¢’ and & = 0 + ¢; hence
AR=d"—a=(¢'— ¢)+ (0'—0),
or, if A¢ denotes ¢’ — ¢,
AR=Ad+ A0 ... (16).
Now from (11), writing ' = p — Ap (u decreases as r increases),
we obtain
(r+ Ar) (p — Ap) sin (¢ + Ad) = rp sin ¢,
or (r+ Ar) (p — Ap) (sin ¢ + A¢ cos ¢) = ru sin ,
since A¢ is a small angle.
Omitting products of the infinitesimal quantities Ar, Ap, A
we obtain, after dividing throughout by ru sin 4,
Ar Ap

tan ¢ =

Tt ajeotg=0 (7).
But, by (15),
érf — ABcot 4.

Hence (17) becomes
(A6 + Ag) cot¢—-é:= 0

and, by (16),
AR=A—:ta,n¢ ...... (18).

Now (12) enables us to express tan ¢ in terms of the variables
¢ and r and the constants a, po, {. When this is done, (18)

becomes AR Ap aposin ¢

B (rpt— atpgsint [}
This equation expresses the amount of refraction suffered by a
ray in passing from one spherical layer with index of refraction

g — Ap to the next lower layer with index of refraction p. The
total refraction R due to the whole atmosphere is given by

) d
B =ap,si J o
A N e Iy
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the limits of integration being u, at the earth’s surface and unity
at the highest layer.

Formula (20) is the general expression for refraction. It is to
be noted that the integral involves two variables, r and p. Now
the index of refraction of any layer is dependent on the physical
characteristics of that layer which, in turn, will depend on the
height of the layer above the earth’s surface, that is, in effect,
on r. Before the integral in (20) can be rigorously calculated the
relation between p and r must be specified. This involves the
application of physical laws embracing the pressure, density and
temperature of the air. Unfortunately, our knowledge of the
physical state of the upper atmosphere is insufficient to indicate
the precise dependence of u onr, and we are thus forced to treat
equation (20) by approximate methods.

37. Development of the general formula for refraction.

The height of the atmosphere is small in comparison with the
radius of the earth, and if we write

r
E= l+8 o.....(2l)

we can regard s as a small quantity; it varies from zero at the
earth’s surface to about 0-01 at a height of 40 miles, which may
be regarded as the limit beyond which the air is ineffective in
producing any appreciablerefraction.* Using (21) and neglecting
terms in 2, 3, ete., we can write

(%3 — gt sin? ¥ = © (w2 — p?sin? { + 2sp2)

a
_ 1 2 ., 2in2 —i( _ _s‘lf.___-.
- gt (1 S
Hence (20) becomes
. d ) 8 d
R J“ P — posin J __spudp
o Slnc g (#2— FLOZ sinz{)* Ho z 1 (""2— #02 sin? C)g
_ R, - R, ... (22).

The expansion by the binomial theorem is only valid if 2su?is
small compared with (u? — p,2sin?{), and since pu, and p are
approximately unity it is invalid when the observed heavenly

® The earth’s mean radius is 3960 miles.



66 REFRACTION

body is on or near the horizon (then { is equal to or close to 90°
and sin { is equal to or close to unity). Consider first the term
R, in (22). It is of the form

of
p(p2— o)t
which is a well-known integral whose value is —sin-? %, Hence,
inserting the limits p, and 1, we obtain #
R, = sin~! (ygsin {) — L.
Now py—the index of refraction of air at the earth’s surface—

is a little greater than unity; denote it by (1+ x), where z is a
small quantity. Then

R, = f (x) = sin7! [(1 + z) sin {] - {,
and by Maclaurin’s theorem, terms in 22, 23, ete. being neglected,

R=f@=fO+2(¥) .

X/ z=0

Now f(0)=sin"1(sin{)~ (=0,

and a _ sin { ’
de  {1— (14 z)*sinz
af
so that <¢7/30)z-o = tan {.
Hence to the degree of approximation indicated
R,=ztan{,

or R = (pp—Dtanl ... (23),

which, on reference to section 35, is seen to be the result obtained
for small zenith distances.
Consider now the second integral in (22), namely,

_ . *e sudp
Ry = posin{ Jl (,u,___——z—- Esnt
In this expression, we regard s as a small quantity varying, as
we have seen, from 0 to about 0-01. Now, by Gladstone and
Dale’s law, we can express p in terms of the atmospheric density

p by p=l+cp . (24),
where ¢ is a constant with a numerical value 0-226. For the air
at the earth’s surface (density p,)

cpo = 0-00029,
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From (24), du = cdp,

an equation which expresses the change in refractive index with
atmospheric density. We then have

—ensing [*___sudp_ <
Ry = cpysin g Jo A prsmipt (25).
In this integral, since u and p, are very nearly unity, and s is
small, the value of R, will be little affected if we write p = pg=1
in (25). Then o sd
R2=csin§J ;P—--—»
o (1—sin2{)¥

= ctan {sec?{ Jp‘ sdp eeaees(20).
0
Ps Do 0
Now J sdp = [sp] — J pds
0 0 s’
s s
= [T + jo pds e 27),

in which s’ denotes the value of s at the highest atmospheric
level where, of course, p = 0. Now s = 0 when p = p,, and it

P
follows that [spl, = 0.

Now aJ:'pds=J:,pd(as),

and the second integral is the expression for the mass of a column
of air, of unit cross section, extending from the earth’s surface
to the effective limit of the atmosphere; it is therefore inde-
pendent of the actual law according to which atmospheric
density changes with height. The mass of a column of air is,
however, related to temperature and barometric pressure, and if

we write R,=—Btan{sec?{ = ..... (28),

the quantity — B (which is g x mass of the column considered’

must be regarded as dependent on temperature and pressure
Combining (23) and (28) we obtain the expression for the
refraction in the form

R=(py—1)tan {4+ Btan{ (1+ tan2{),
or R=Atan{+ Btan®{ = ...... (29),
in which 4 has been written for (u,—1)+ B.
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Instead of calculating the values of 4 and B irom the physical
data concerned, it is preferable to assume that the refraction
can be expressed by a formula of the type (29), and to derive the
values of the coefficients A and B from observations of stars.
The numerical expression for the mean refraction (for barometric
pressure 760 mm and temperature 10° C.) is

R =58"16tan { — 07-067tan3{ ...... (30).

The approximations which we introduced in deriving formula
(29) are insufficient when the zenith distance exceeds 75°
approximately. For observations made near the horizon,
special tables of refraction have been prepared (based mainly
on observational data) and are in use in observatories where an
accurate knowledge of the refraction is essential. Among these
may be mentioned the Greenwich Tables (1898) and the
Pulkova Tables (4th edition, 1956).

38. Thedetermination of the constants A and B in the formula (29).

In the next chapter, we shall consider in some detail the
ingtrument by which the zenith distances of heavenly bodies
at upper or at lower culmination can be measured ; meanwhile
we shall take for granted X, X
the practical results of the V4 .
method. Consider a star
at upper and lower culmi- P
nation. Atupper culmina-
tion it is observed at X,;
the displacement due to
refractionis X X, (Fig. 30).
ZX, = { which is obtained
from the observation, and
ZX is the true zenith dis-
tance z, so that

g (900—8)—- (900_ ¢), Fig. 30.
orz=¢— 8. Nowz={+ R, where R is the refraction corre-
sponding to the observed zenith distance {; hence by (29),

¢—8={+Atan{+ Btan®{ ...... (31).

Let [’ be the observed zenith distance at lower culmination.
Then {' = ZY, and the true zenith distance ZY or 2’ is given by
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7= (90°— ¢) + (90°— 8) or 2’ =180°— ¢ — &, Alsoz'={('+R’;
hence we have

180°— ¢ ~8=(¢+Adtan '+ Btan® ' ...... (32).
[f the values of ¢ and & are known accurately, we have two
:quations (31) and (32) in which 4 and B are the only unknowns,
for { and {' have been determined by observation. If we suppose
that 8 is known, we can eliminate ¢ from (31) and (32) and so
>btain 180°— 26 =¢{+{+R+ R ... (33).
Observations of another star will lead to an equation similar in
form to (33), and from this equation and (33) the values of 4 and
B can be determined. As no observation is free from error, such
srrors are incorporated on the right-hand side of (33), thus
vitiating slightly the deduced values of 4 and B. To reduce the
errors in 4 and B to a minimum, a large number (n) of stars are
observed and the n equations of the type of (33) are solved for
A and B by the method of “least squares”.

39. The effect of refraction on the time of sunset.

When a heavenly body is on the horizon at rising or setting
—the zenith distance is then 90°~the numerical value of the
refraction is 34’ (this is called the horizontal refraction). Now the
effect of refraction is to make the body appear nearer the zenith
than it would be seen if the atmosphere were non-existent or
ineffective in deviating rays of light. Hence it follows that at
setting, for example, when the observed zenith distance { is 90°,
the true zenith distance z of the heavenly body is 90° + hori-
zontal refraction, or 90° 34’. If we take the case of the sun, it is
clear that the time of visible sunset is later than the time of
theoretical sunset, which is discussed in section 31 of Chapter 11.
The interval between theoretical and visible sunset is easily
found. Let H be the hour angle when the true zenith distance
of the sun’s centre is 90° and let H + AH be the hour angle when
the sun’s centre is seen on the horizon. Then (= 90° and
2z = 90° 84'. Then we have, as in section 31,

cosH=—tangtand ... (34),
and also, by the cosine formula A,
cos (90° 34’) = sin ¢ sin 8 + cos ¢ cos & cos (H + AH),
which may be written
~ 8in 34’ =sin ¢ sin 8 + cos ¢ cos & (cos H cos AH — sin H sin AH).
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As 34’ and AH are small angles, we can reduce the last equation
to
— 345in 1’ = sin ¢ sin 8 + cos ¢ cos S cos H
—15AH sin 1’.cos ¢ cos 8 sin H,

in which AH is now supposed to be expressed in minutes of time.
Using (34), we find that
AH = 3% sec ¢ sec 8 cosec H minutes ...... (35).

Let us take a simple example. Suppose the latitude is 60° and
3 = 0° (about March 21 or about September 21). H being the
hour angle of theoretical sunset is easily seen to be 62. Hence
from (35), by calculation, AH = 4m.5,

The sun’s declination & which we have introduced intc tke
formulae is the declination of the sun’s centre, and the zenith
distances concerned are the zenith distances of the sun’s centre.
To find the hour angle when the sun’s upper limb just disappears
below the horizon, we notice that the true zenith distance of the
sun’s centre then is 90° + 34’ 4 the angle subtended by a radius
of the sun. The last quantity is the sun’s semi-diameter, which is
tabulated in the almanacs for each day of the year and, for the
purposes under consideration, may be taken to be 16’; thus the
true zenith distance of the sun’s centre under the circumstances
now contemplated is 90° 50’. If AH now denotes the interval
between the time of theoretical sunset and the time of the dis-
appearance of the sun’s upper limb below the horizon, AH is

givenby  AH - 89 gec ¢ sec 8 cosec H minutes.

Hence in latitude 60° when the sun’s declination is zero,
AH = 6m.7, There is a similar interval between visible sunrise
and theoretical sunrise. The effect of refraction is thus to increase
the length of the “day” (by the “day” is here meant the
interval during which some part of the sun is above the horizon)
by about 13} minutes at the latitude and at the dates indicated.

40. Effect of refraction on the right ascension and declination of
a star.

Consider the position X of astar on the celestial sphere (Fig.31).
It is displaced towards the zenith Z by refraction to the position
X'. Through X' draw a small circle of which P is the pole to cut
PX in Y. Since XX’ is small, we can consider XX'Y to be &
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plane triangle right-angled at ¥. Denote the hour angle ZPX
and the north polar distance PX of X by H and 90° — § re-
spectively. X’ is the observed position of the star and let ZPX'
and PX’ be denoted by H' and 90° — &’. It can be supposed
that an observation of the star enables the values of H' and §'

Fig. 31.

to be derived; it is required to find the values of H and 8. From
the plane triangle XX'Y in which % denotes the angle X'XY,

we have X'Y=XX'sing . (36),
and XY =XX'cosyp = ... (37).
Now X'Y=X'PYsinPX' = (H— H')cos¥'.

Also XY =38-34.

Using the simple expression for the refraction in formula (7),
we have XX’ = k tan {, where ZX’' = {. Hence (36) and (37)
become H— H =ktan{secd sing ... (38),
§—8 =—ktanfecosnp = ... (39).
Intheseequations 7 is the parallactic angle PXZ; as X X' is small,
PX'Z will differ little from PXZ and so n may be regarded as

defined by PX'Z. Thus 5 can be calculated from the data by
means of the cosine formula A (we assume PZ = 90° — ¢ to be
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known). Since we have supposed that H' and 8’ can be derived
from the observation of the star, the right-hand sides of (38) and
(39) can be calculated; consequently H and & can be found.
Now if 7 is the vernal equinox the right ascension of the point
X is T4 and of X', TB. If «, o’ denote the right ascensions of
Xandof X',o' —a= AB = H — H'. Hence
¢e—a =—ktan{secd sinngp ... (40).

(40) and (39) thus enable us to calculate the true right ascension
and declination of the observed body.

EXERCISES

1. Find the approximate north latitude where the effect of refraction, at
a time when the sun’s declination is 10° 8, is to lengthen the day by 15 minutes.
(The horizontal refraction is 34".)

2. Assuming that the atmosphere is homogeneous and of height & (Cassini’s
hypothesis), prove that
sin R =252 [
a+h
where a is the radius of the earth.

(u?—2pcos R+ 1)*,

8. If the relation between r and p is ru™t! = constant (Simpson’s hypothesis),
prove that R=1 {;—sin—l <31_“ £>}’
n "
and deduce Bradley’s formula

_2pn1
T g+l

tan (¢ — 3nR).

4. Assuming that the formula for refraction is R = k tan [, prove that the
circular disc of the sun appears, due to refraction, as an ellipse whose semi-major
and semi-minor axes are a (1— k) and a (1 — k sec? 2), where % is expressed in
circular measure, { is the observed zenith distance of the sun’s centre, z is the
true zenith distance and a is the sun’s semi-diameter.

5. The mean of any two perpendicular diameters of the sun is observed to
be D. If z is the true zenith distance of the sun’s centre, show that the true
angular diameter of the sun is

D {I + I2c(1+ sec? z)},
where k is expressed in circular measure.

6. If the declination of a star is unaffected by refraction at a given moment,
prove that the azimuth is then & maximum.
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7. X,and X, are two neighbouring stars, the true angular distance between
them being D (in seconds of arc). If Z is the zenith, ZX’;XQ = and the true
zenith distance of X, is z, prove that the observed angular distance is

D — kD (1+ cos? ¢ tan? z),
in which k is expressed in circular measure.

8. If ¢ is the latitude, H the hour angle and § the declination of a star, show
that refraction diminishes the apparent rate of change of hour angle at the
rate of

sin 26
0e-51 ) (tan & + cot ¢ sec H) per hour,
where tan 8 = cot ¢ cos H. (The constant of refraction = 58:2.)
Show also that the rate of change of refraction in declination is

+ 15”-2 cot ¢ sin H cos? § cosec? (8 + 0) per hour.

9. If the formula for refraction is given exactly by an equation of the form
R = ktan{, how will the refractive index vary with height ? Determine % and the
height of the atmosphere in terms of the refractive index at ground level.

(Glas. 1965.)

10. Use the result of exercise 41 of Chapter 11 to show that the effects of
refraction on the right ascension and declination of a star are given by

ksec?8sin H

fa= tandtan¢ + cos H’

5= k(tan¢ — tandcos H)
" tandtan¢ + cosH °




CHAPTER IV
THE MERIDIAN CIRCLE

41. General description.

In this chapter we shall consider some of the principal features
of the fundamental instrument of astronomy—the meridian
circle—by which the right ascensions and declinations of the
principal heavenly bodies can be determined with great pre-
cision. Meridian circle observations also provide the information
by which sidereal clocks can be regulated (in practice it is
sufficient to derive the error of a sidereal clock), and after a
simple step the true mean time at any instant can be deduced
so that the error of a clock
keeping mean solar time
can be easily found. The
instrument consists prima-
rily of a refracting tele-
scope which can be rotated
about a fixed horizontal
axis (the rotation axis) ori-
ented east and west. The Poirter| | Pointer
telescope itself can thus
move only in the plane of
the meridian. Fig. 32 shows
the main features of the
instrument. In the focal Plane
plane of the object-glass
are two systems of spider
threads, or “wires”’—as
they are generally called—(a) one or sometimes two horizontal
wires (a single horizontal wire is shown in Fig. 33), and (b) several
wires, at right angles to the horizontal wire, arranged sym-
metrically about a central wire 4.B; these wires will be referred
to as the vertical wires. In some instruments, attached to the
plate carrying the wires are two micrometers, one capable of
moving the horizontal wire (or wires) parallel to HK, the other

C Object glass

Fig. 32.
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capable of moving the system of vertical wires parallel to 4B.
In other instruments the system of vertical wires is fixed, but
there is an additional vertical wire which can be moved by a
micrometer across the system of fixed wires.

The plane through the centre C of the object-glass and perpen-
dicular to the rotation axis E W is called the collimation plane,and
the straight line through C lying on this plane and intersecting
the rotation axis is called the collimation axis (CO in Fig. 32).
As the telescope rotates about
the axis EW, the collimation /-54
axis will clearly sweep out the Kr ﬁ\%
collimation plane. Assume,for
amoment, that the instrument
is mechanically perfect and
that it has been set up accu- H K
rately, with the central wire Q
AB in the collimation plane;
then, as viewed through the
eye-piece at F', any star which, \K

L/

at a given instant, is observed \B-)/
on the central wire will, at
Fig. 33.

that moment, be on the meri-
dian. If this instant is noted by means of a sidereal clock keeping
accurate sidereal time, this sidereal time (otherwise described
as the hour angle of the vernal equinox) is clearly equivalent
to the star’s right ascension. The function of the additional
vertical wires in Fig. 33 is to give additional accuracy; for, as
the star moves across the field of view owing to the diurnal
motion, it coincides with the wires in succession and, if the co-
incidences with each of the vertical wires are noted, the mean
will presumably give a much more accurate determination of the
sidereal time of transit—and hence the star’s right ascension—
than if the observation is restricted to the single coincidence
with the central wire.

Attached to the axis of rotation are two finely graduated
circles (shown at E and W in Fig. 32), with auxiliary optical
arrangements for enabling an accurate measurement of a star’s
altitude to be made; as the latitude of the meridian circle may
be presumed known, the star’s declination can then be simply
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deduced. Such then, in brief, are the main principles according
to which the positions of the stars are obtained from meridian
circle observations.

42. Instrumental errors.

It is impossible, however, to set up an instrument with the
precision necessary for the accurate measurement of stellar
positions, as just indicated, and it is necessary in actual practice
to take into consideration the inherent errors of the instrument.
These errors are (i) azimuth error—the axis of rotation is not
accurately oriented east and west and its angular deviation from
the true east and west direction is the azimuth error (sometimes
called the deviation error), which will be denoted by a; (ii) level
error—the axis of rotation is not accurately horizontal and the
angular deviation from the horizontal is called the level error,
which will be denoted by b; (iii) collimation error—the central
wire is not quite in the collimation plane, and the angle between
the collimation axis and the line joining the middle point of the
vertical wire to the centre of the object-glass is called the
collimation error (denoted by ¢). We shall examine in turn the
effect of these errors on the observed time of transit of a star.

43. Azimuth error.

Assume that this is the only error. Fig. 34 shows the celestial
sphere with the horizon and equator and the cardinal points;
the centre of the sphere is taken to be the point of intersection
of the collimation axis with the rotation axis. If the instrument
were perfectly set up, one end of the axis would point to the
west point W and the other to the east point E. We shall
suppose, with azimuth error presumed, that the west end of the
rotation axis points towards the point A of the horizon, W4
being the azimuth error; the convention is that the azimuth
error is positive when 4 is between W and § as in Fig. 34. As
the telescope is rotated about its axis, the collimation axis will
describe a plane perpendicular to the rotation axis and cutting
the celestial sphere in a great circle of which 4 is the pole: this
great circle we shall designate the ““fictitious meridian”.Since 4 is
a point on the horizon, the fictitious meridian will pass through Z.
Let X be the position of a star at the moment of its coincidence
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with the central wire (which is in the collimation plane); then
ZX is an arc of the fictitious meridian. Let r, denote the angle
ZPX it is seen from the figure that since X is the position of the
star when it is observed on the central wire, the true time of
transit will occur later, P
after an interval r,, when
the star reaches the true
meridian at Y. =, is thus
the error in the time of
transit of the star.

Now Wid=WA=aq, p,
since Z is the pole of

N E
WASE. Also WZS = 90° '
and 42X = 90°, since A4
is the pole of the great
circle ZX (the fictitious
meridian). Hence

YZX —a, Fig. 34.
and therefore PZX = 180°— a. From the triangle PZX in which
PZ = 90°— ¢, PX = 90° — §, ZPX = 7, and PZX = 180° — g,
we have by formula B (the sine-formula),
sin PZX sin ZX = sin ZPX sin PX,

or sin a sin ZX = sin 7, cos 8.

Also, a and 7, are small angles so that, in general, ZX is approxi-
mately equal to ZY, that is, to (¢ — 9); alsosina=a, sinr, ==,
and consequently,

7=asin(¢d—8)secd ... (1),

in which both 7, and @ may be supposed expressed in seconds of

time. This formula gives the correction to the observed time of
transit due to azimuth error alone,

44. Level error.

Assume now that the only instrumental error is the level error
and that the west end of the axis is tilted upwards by the angle b.
In this case the sign of b is, by convention, positive. On the
celestial sphere the west end of the axis will be represented by B
(Fig. 35) so that WB = b, since there is no other error, B will lie
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in the prime vertical ZW. As the telescope is rotated about
its axis, the collimation axis will describe a plane cutting the
celestial sphere in a great circle of which B is the pole. In Fig. 35
this great circle is SX (it passes through 8, since S is the pole
of WZ and consequently
SB = 90°). SX is now
the fictitious meridian,
Now WB=WSB=5 ;also
WR8Z=90°and BSX=90°;
hence Z8X = b. Consider
a star at the observed
moment of transit over
the central wire; it is then
at X, we shall suppose,
on the fictitious meridian,
and its observed time of
transit occurs before it
reaches the true meridian Fig. 35.

at Y. Let XPY = ,; then r, is the correction to be applied to the
observed time of transit to give the true time of transit at Y.
In the triangle PXS, PX = 90° — 3, PS= PZ + Z8 = 180°— ¢,
SPX = 7, and P8X =b. By formula B,

sin 7, 8in PX = sin b sin SX.
%nce b is always very small, SX is approximately equal to SY.
80
SY =P8 — PY =180°— ¢ — (90°— §) = 90° — (¢ — &).

Hence sin r, cos 8 = sin b cos (¢ — J).
Express the small angles 7, and b in seconds of time; then
7= bcos($—8)secd ... (2).

This formula gives the correction to the observed time of transit
due to level error alone.

45, Collimation error.

Assume now that the only error is collimation error. In this
case the central wire lies outside the collimation plane, and as
the telescope is rotated the central wire will describe a plane
parallel to the plane of the true meridian; this plane will inter-
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sect the celestial sphere in a small circle XU (Fig. 36) which is
now the fictitious meridian. The straight line joining the centre
of the object-glass to the middle point of the central wire will
make a small angle ¢ with the collimation axis and as the latter
is perpendicular to the
rotation axis, in this case
EW, the angular distance
of W from any point on
the small circle XU is
90°+ ¢. (The sign of ¢ is
taken to be positive when
the fictitious meridian XU
cuts the horizon to the
east of S, as in Fig. 36.)
Consider now a star X at
the moment of transit over
the central wire; when ¢
is positive, it is seen from -
the figure that the star is Fig. 36.

on the central wire before it reaches the true meridian at Y.
Let ZPX = 73. In the spherical triangle WPX, WX = 90° + ¢,
WPX = 90°+ 73, PX =90°—8 and WP = 90°. Then, by
formula A,

cos WX = cos WP cos PX + sin WP sin PX cos WPX,

from which — sin ¢ = — cos § sin 5,

so that, ¢ and 73 being small and both expressed in seconds of

time, 73 = C 8€C S cereer(3).

46. The total correction to the observed time of transit.

Let T be the observed time of transit over the central wire
according to the sidereal clock—in practice, T' would be taken
to be the mean of the observed times of transit over, say, seven
wires, three on each side of the central wire. Suppose that the
clock is in error by AT, AT being regarded as positive when the
clock is slow. Then the true time of transit over the central wire
is 7' 4+ AT'. The sidereal time of transit over the true meridian is
then 7' 4+ AT + 7, + 7, + 75. This is the right ascension (a) of
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the star. Thus, ¢ =T + AT + 7, + 7, + 73, or, from (1), (2)
and (3)

a=T+4+ AT + secS{asin (¢ — 8) + bcos (¢ — &) + ¢} ...... 4),
which is sometimes written in the form
e=T+AT+ad+bB+eC ... (5),

where 4 = sin (¢ — 8) sec 8, B = cos (¢ — 8) sec 3, and C = secd.
Actually, the error AT of the sidereal clock is not constant from
day to day, but we shall assume, however, in determining the
right ascensions of the stars according to (5), that its value is
known for each observation. Also the formula (5) is incomplete
in the form just given, as a small term due to aberration (see
section 111) has not yet been included ; the value of this term is
- 08-021 cos ¢ sec d.

The formulae given so far refer to the upper culmination of
a star. The corresponding formulae for lower culmination can be
derived in a similar manner. The formula corresponding to (4) is
found to be of similar character and is derivable from (4) by
writing (180° — &) for 8 in that equation.

47. Bessel's formula.

The correction  to the observed time of transit of a star due
to all three errors a, b and ¢, considered together, can be in-

Fig 37.
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vestigated as follows. Suppose that the west end of the rotation
axis points to the position B on the celestial sphere. Draw the
vertical circle ZBA to meet the horizon in A. Then WA =a
(azimuth error) and AB = b (level error). Also let X be the
position of a star at the moment of coincidence with the central
wire. Then BX = 90° + ¢. Draw the meridian PBC to meet the
equator in C and let WC = WPC = m and BC = n. The quan-
tities m and 7» are simply related to a and b. In the triangle
PBZ,PZ=90°— ¢, PB=90° —n, BZ=90°—b, PZA = 90° + a
and ZPB = 90° — m. By A, we have
cos PB = cos PZ cos ZB + sin PZ sin ZB cos PZB,

or sinn = sin ¢ sin b — cos ¢ cos bsin a,
which can be written with sufficient accuracy, since n, ¢ and b
are small, n=bsin¢g—acosdp ... (6).

Also, by formula D,
cos PZ cos PZB = sin PZ cot ZB — sin PZB cot ZPB,

or — sin ¢sina = cos ¢ tan b — cos a tan m,
from which we have, since m, ¢ and b are small,
m=asing¢+bcosd ... (7).

Now in triangle BPX, BX = 90°+ ¢, PB=90°—n, PX = 90°—§
and BPX = 90° 4 » — m, where 7 is the angle ZPX (the cor-
rection to the observed time of transit at X over the central wire
to give the time of transit over the true meridian PZS). By A
cos BX = cos PB cos PX + sin PBsin PX cos BPX,
whence
—~ sin ¢ = sin # sin 8 — cos 7 cos 3 sin (r — m),
or, since ¢, n and (r — m) are small angles,
—~c=mnsind— (r— m)cos?,
from which we obtain
r=m+ntand+csecd ... (8).
This is Bessel’s formula and is the form found most convenient
in practice. Itis easily verified that when the values of m and n,
given by (6) and (7) in terms of a and b, are substituted in (8),
formula (4) is obtained. Inserting the clock error AT and the
aberration term we obtain, for the right ascension of the star
under observation,
a=T+ AT + m 4 ntand + (c — 08:021 cos ¢) sec 8 ...(9).
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48. Wire intervals.

As already stated, some meridian circles are fitted with a
micrometer by means of which the entire system of vertical
wires can be moved across the field of view; in other instruments
the system of vertical wires is fixed and the micrometer actuates
a moving wire, which can be placed successively on any two of
the fixed wires. In both types it is necessary to determine

(a) the interval between two consecutive wires in terms of
the micrometer scale, and

(b) the value of one revolution of the micrometer in terms of
angular measure.

To determine (a) in the first type of instrument, suppose that
a distant object is visible in the field of view when the telescope
is approximately horizontal. By moving the micrometer so that
two wires are successively coincident with the image of the
distant object, the interval between the wires is expressed as the
difference between the micrometer readings. The observation
can then be repeated for any other pair of wires. It is obvious
that, in the second type of instrument, the wire intervals can be
easily found in terms of the micrometer scale.

To determine (b), the interval of time required by a star to
pass from one wire W, to another wire W, is observed. A star
near the pole is selected for this purpose as it moves compara-
tively slowly across the field of view. As the telescope is rotated
about its axis, the wire W, will sweep out a plane which will
intersect the celestial sphere in a small circle of which the west
end B (as in Fig. 37) is the pole. Let the angular distance of B
from any point on this small circle be 90° + ¢,; then ¢, is the
collimation error of W,. Then if 7, is the interval between the
transit of the star X (Fig. 37) over wire W, and over the true
meridian, we have by (8), taking into account that ¢, and n are
small, Ty=m+ ¢, 8ec S+ ntan d vaeene(10).
Now consider wire W, and let 7, and ¢, be the corresponding
quantities. Then we have, as before,

Tg=Mm+ cysec 8+ n tan d veeena(11).

If T,, T, are the times by the sidereal clock when the star is on
wires W, and W, respectively, and 7' is the time by the clock
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when the star is on the true meridian, we have
) To=T,+AT 4+ 7 and Ty=T,+ AT + 7.
Alsoif ¢t = T, — T, (t being the time in seconds required by the
star to pass from W; to W,) then, eliminating 7', and AT,
; l=1— 7y,
so that, by (10) and (11),

t = (¢c; — ¢c,) sec 3,

or ¢, — €, =tcosd ceenns(12).

Now ¢, — ¢, is the angular separation of the wires W, and W,
(expressed in seconds of time), and it can consequently be
calculated from (12), for ¢ is observed and 8 is known. Formula
(12) is sufficiently accurate in practice unless the star’s declina-
tion is very near to 90°,

As we have explained, the interval between the two wires W,
and W, can be found in terms of the micrometer scale, and thus
we are enabled to express one revolution of the micrometer head
in terms of seconds of time,

From (12), it is seen that ¢, — ¢, (expressed in seconds of time)
is the interval required for an equatorial star to pass from wire
W, to wire W,.

Ezxample. On 1931 January 3, the interval between the
transits of 8 Ursae Minoris over two of the wires of the Cambridge
Meridian Circle was 3™ 48; to find the wire interval.

From the Nautical Almanac, 6 = + 86° 36’ 34", Also
{ = 3w 48 = 1848. Thus

¢, — €y = 1848 cos 86° 36’ 34"
= 108-88,

49. Determination of the collimation error.

The methods of determining the instrumental errors vary
according to the size or elaborateness of the meridian circle
concerned. It is not our purpose to describe all the different
methods in use and for details the student is recommended to
study a book dealing specifically with practical astronomy.*
There are, however, certain general principles involved in the

* For example, The Elements of Practicul Asironumy, by W. W. Campbell
(Macmillan, 1899).
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determination of the various errors and we shall consider these
in turn, taking first the collimation error.

As regards large instruments the collimation error is deter-
mined by means of two collimators, one north of the telescope
and the other south. Consider the south collima-
tor. It consists of an object-glass mounted verti-
cally, with its axis in or near the meridian and at
the same height above the floor as the rotation axis
of the telescope. In the focal plane (4.B) of the
object-glass (C) of the collimator are placed one
or two vertical wires and one or two horizontal
wires (Fig. 38). (For simplicity, we shall suppose
that there is only one vertical wire and one hori-
zontal wire.) These wires can be viewed by means
of an eye-piece just outside the focal plane AB.
When the meridian circle telescope is pointed
horizontally and south, the observer can see in
the field of view at E the collimator wire W when

S

1L

Telescope

it is suitably illuminated. Since the collimator
wire is in the focal plane of C, rays passing from
W through the collimator will emerge at C as a |
parallel beam and after entering the object-glass
D of the telescope the wire will be seen sharply | : !
at E. In this optical arrangement the observation L
of the collimator wire is equivalent to the observa- '\&‘%} ©
tion of an object at an infinite distance. Thenorth |
collimator is arranged in a similar way, but we \l
|

Fig. 38.

shall suppose that the vertical wire in this colli-
mator is movable by means of a micrometer and
that the south collimator wire is fixed. When the
telescope is rotated to the vertical position, shut-
ters in the framework of the axis can be opened,
allowing an unimpeded view from one collimator
to the other. Thus the observer, if stationed at
the eye-end of the north collimator, can see the \ﬂ
wire of the south collimator and by actuating the = 3 Q
micrometer can make the north collimator wire

coincide with the image of the south collimator wire. When this
is done, the combined optical arrangement is such that the south

Collimator
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collimator wire, when viewed in the telescope, appears as if it is
at an infinite distance in a particular direction and the north
collimator wire, when viewed in the telescope, appears as if it
is at an infinite distance in exactly the opposite direction. Itis
unlikely that the direction of the south collimator wire is exactly
gouth; suppose that the direction is 6 degrees west of south;
then the north collimator wire will be in the direction 8 degrees
east of north. The method of determining the collimation error
¢ must be such that the unknown quantity 6 is eliminated in
the observations.

Suppose that the telescope is first pointed to the south
collimator so that its vertical wire is visible. This wire corre-
sponds to an object whose position on the celestial sphere is
indicated by the point F (Fig. 39), F'S being the angle §. Assume
that the collimation error P D
¢ is positive; then on the
cclestial sphere the central
wire will sweep out the
small circle CD (as the tele-
scope is rotated about its
axis) of which the west axis
B of the instrument is the
pole, and the great circle
arc joining B to Cis 90° + c.
Since the level error is al-
ways small, this great circle
arc will be practically co-
incident with the horizon in Fig. 39.
the neighbourhood of the south point S; for the present purpose
we can thus ignore level error and assume that the west part of
the axis of the telescope points to 4, 4 being on the horizon
such that WA is the azimuth error a. Then AC = 90°+ ¢. Now
48 = 90° — a and AC = 90° + ¢; hence SC = a + ¢ and, since

FS =
§=46, FC=0+a+c eeeass(13).

We shall consider a meridian circle fitted with a fixed system of
vertical wires and a movable wire connected with a micrometer
whose scale has been determined, for example, by the method of
Section 48. Place the movable wire over the central wire (corre-
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sponding to C in Fig. 39) and let the reading be M, ; then place
it over the image of the south collimator wire F' and let the
reading be 3,. Then, in terms of the micrometer scale,
M, —~ M, = CF, and writing D = M, — M; we have, from (13),
D=08+a+c ... (14).
It is necessary to make some convention with regard to the sign
of D; the sign will be assumed to be positive when, as in Fig. 39,
Cis east of F'; as viewed in the telescope (the optical combination
is inverting) the central wire C will thus appear to be west of the
south collimator wire 7.

Now suppose the telescope pointed to the north collimator.
Neglecting the level error, the east end of the axis will point to
4, (Fig. 40) such that E4, = a. The small circle on the celestial
sphere, of which 4, is the 7
pole, associated with the D, S
central wire will intersect
the horizon, between the
north and east points, at
C,. Since 4, in Fig. 40 and
A4 in Fig. 39 are diametri-
cally opposite points and
since AC = 90° + ¢, then
we have A,C;= 90°—c.
Also 4, N = 90°— a; hence
CiN =c—a. Again, the
vertical wire of the north
collimator is in the direction Fig. 40.

6 degrees east of north; on the celestial sphere it will define the
position @ such that GN = §. Hence

GC,=c—a-0 ... (15).
Now the micrometer reading when the movable wire coincides
with the central wire is M;; let the reading be M, when the
movable wire coincides with the north collimator wire G. Write
D' = M, — M,. Then according to Fig. 40, since C, is east of ¢
so that in the telescope the central wire appears west of the
collimator wire, the sign of D’ is positive by our convention. By
(15) we have D=c—a-0 ()

From (14) and (16), ¢ = } (D + D)) veeeee(17):
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This is the formula for the collimation error ¢. D and D’ are at
first expressed in terms of the micrometer scale, and, from the
previously ascertained value of one revolution of the micrometer
in terms of seconds of time, we are thus enabled to express ¢ in
terms of the latter unit.

It is to be noted that for instruments in which the system of
vertical wires is movable the effect of collimation error and the
aberration correction (to which reference has been made in
gection 46) on the time of transit of a star can be removed. To
each position of the central wire corresponds a definite value of ¢,
and, if the wires are moved to such a position that

¢c—0%02lcos =0 ... (18)

(in which ¢ is the latitude), the only corrections to be applied to
the time of transit over the central wire to give the time of
transit over the true meridian are the corrections due to the
azimuth error a and the level error b.

50. Determination of the level error.

As regards the smaller instruments, this error can generally
be derived with sufficient accuracy by means of a striding level,
placed on the axis of rotation. For large instruments, a more
precise method is employed, which
we shall now describe. The tele- £
scope is pointed vertically down- @
wards towards a bowl of mercury
which is generally placed below the
floor level to avoid atmospherical
and other disturbances. The sur- Light — G

Jrom —> JA
face of the mercury actsasareflect- Lamp ~— l
ing horizontal plane, the normal l¢
to which defines the direction of .
the zenith. A special eye-piece—

the Bohnenberger eye-piece—en- /yél,{ggope /
ables a beam of light to pass into I,
the telescope; after traversing the Fio 41

ig. 41,

object-glass, the beam will be
reflected at the mercury surface and will then re-enter the object-
glass. The central wire and its image formed as a result of
Tellection at the mercury surface will both be seen in the field of
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view. The special eye-piece (Fig. 41) consists of a tube in the side
of which is an aperture 4 through which the horizontal rays
from a lamp, placed some distance away, enter the tube. In the
tube is placed opposite 4 a piece of clear glass @ inclined at 45°
to the axis of the tube. The glass surface acts as a reflector and
so part of the beam entering at A is reflected by G into the
telescope. The glass being unsilvered, the observer with his eye
at E can see the vertical wires and their images due to the
reflection at the mercury
surface. In Fig. 42,let EW
be the rotation axis of the
telescope inclined at the
angle & to the horizontal,
O the centre of the object-
glass, C' the central wire
and D its image, and AB
the mercury surface. The
ray CO from C to the
centre of the object-glass
will be undeviated by the
latter (supposed thin) and
will strike the mercury
surface at B. Since C is
in the focal plane of the
object-glass any other ray
CG will emerge from the
object-glass along G4 pa-
rallel to OB. Thus a cone
of rays from C will emerge
as a parallel beam. This
beam will be reflected at the mercury surface into another parallel
beam which will be brought by the object-glass to a focus at D.
Consider the ray COB; at B it is reflected along BH in such a way
that OBS = SBH , BS being perpendicular to the mercury
surface at B; after passing through the object-glass at H, it
passes through D. Produce DO to meet the mercury surface at 4.
Let C@ be the ray from C which is incident on the mercury
surface at 4. Then this ray is reflected along A0 and will pas¢
through D; thus G4 is parallel to OB and AO is parallel to BH.
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It follows that COD = GAO = OBH and each is twice OBS.
Let OQ be parallel to BS and A R. Then, since OQ is perpendicular
to the mercury surface, KQO = 90°+ b. Also WEKO = 90° + ¢,
where ¢ is the collimation error. Now

KOO = WKO — QOK,
that is b=c— }COD.

The angle COD can be measured. Place the movable wire over
the central wire C and then over its image at D; the difference
in readings is, say, R, which can be converted into seconds from
the known value of the micrometer scale. We thus have

=¢c—3R ... (19),

from which b can be derived, the value of ¢ being supposed
knowun. When the system of vertical wires is movable, the value
of 3R is obtained simply by moving the wires until the central
wire coincides with its image. The convention as to the sign of B
is as follows: when the central wire is seen in the telescope to the
west of its image, R is defined to be positive.

81. Determination of the azimuth error.

The azimuth error a is determined from observations of stars,
the values of b and ¢ having previously been derived. Let
(ay, 8,) and (ay, 8,) be the equatorial co-ordinates of two stors,
T, and T, the observed times of transit by the sidereal clock.
By (5), we have

a,=T,+ AT + ad, + bB, + ¢C,,

ay="T,+ AT + ad, + bB, + ¢C,.
In these equations, AT is the unknown error of the clock, and
if, by a suitable choice of stars, the observations are made within
a few minutes of each other, the value of AT can be assumed to
be the same in the two equations; also 4, = sin (¢ — 3,) sec §,,
etc. By subtraction, AT is eliminated and we have
- (¢g— ) = (Ty— T)) — b (By— By) — ¢ (C,— CY)

4,— 4,

a

In this equation,
Ay~ A, = sin (¢ — 8,) sec §, — sin (¢ — §;) sec §;.
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The right-hand side of (20) can be calculated from the known
values of b, ¢, ¢, a,, 3;, 8, and the observed times 7, T,. It
remains to indicate how best the choice of stars can be made to
ensure an accurate determination of a. It is clear from (20) that
a can be most accurately determined if the denominator
(4, — A,) is large. This condition is fulfilled if (i) a star of high
declination (3,) and a star near the equator (declination 8,) are
selected, for then 4, is large, since sec 8, is large, or (ii) a star of
high declination (3,) observed at upper culmination and a star
of high declination (3,), differing from the first by about 12 hours
in right ascension, observed at lower culmination. In (ii), the
values of 4, and 4, will both be large but of opposite sign, so
that (4, — 4,) will be numerically large.

52. The chronograph (mainly of historical interest).

In modern instruments the times of transit of a star over the
system of vertical wires are recorded electrically by means of
a chronograph. A clockwork mechanism causes a paper tape
to be drawn out at a uniform rate (or a cylinder covered by a
sheet of paper to revolve at a uniform rate). The sidereal clock
by which the times of transit are to be recorded is connected
electrically with an electro-magnet belonging to the chronograph
and to which a pen is attached. At the bottom of its swing, the
pendulum of the clock closes an electrical circuit for an instant
and the action of the momentary current passing through the
electro-magnet is to cause the pen to “kick”. When there is no
current, the pen traces out a straight line on the moving tape
(or a uniform line on the rotating cylindrical paper), but when
contact is made by the pendulum, the “kick” of the pen results
in a distinctive mark being made on the paper. In this way, the
seconds of the clock are mechanically registered. Usually, there
is an automatic arrangement by which the pen misses the 60th
second of every minute, and thus it is easy, by simple reference
to the clock, to ascertain the hour and minute of any “blank”;
this time can be written down on the paper and any particular
second of the following minute deduced by counting the “kicks”
of the pen from the “blank”. This is illustrated in the upper
trace of Fig. 43. The chronograph carries a second pen, attached
to an electro-magnet, which makes a trace parallel to that of the
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clock pen, and this pen can be actuated by the observer closing
a circuit by means of a tapping-key. When he sees, in the
telescope, the star on a vertical wire he gives the key a sharp tap
and the second pen makes a “kick” on the moving paper. The
time of transit over this wire can be inferred later from the
chronograph record (this is illustrated in the lower trace of
Fig. 43).

58s. 50s. 3h'f2m'

1s. 2s. 3s.

L 1

(Blank)

Fig. 43.

There are in use several modifications of the procedure just
outlined. In one, the observer moves a vertical wire, by means
of the attached micrometer, in such a way that the wire appears
to bisect continuously the image of the star as it moves across the
field of view; at definite points, corresponding to the positions
of the system of vertical wires, the frame supporting the wire
closes an electrical circuit and the chronograph pen makes the
appropriate records. In other instruments, the moving wire is
driven across by a small motor, at a rate adjusted according to
the declination of the star, and the observer has only to make the
necessary small corrections to the rate to ensure the accurate
bisection of the stellar image by the moving wire.

53. The measurement of declination.

We have already mentioned that the rotation axis of the
telescope carries two finely graduated circles, the graduations
being generally at 5 intervals from 0° to 360°. In the focal plane
of the object-glass there is a horizontal wire and when observa-
tions of a star’s declination are being made the telescope is
adjusted so that, in the neighbourhood of the collimation axis,
the star appears to travel along the horizontal wire. In this
position, the circles indicate a particular reading R, , the accurate
determination of which is facilitated by the use of four micro-
Scopes (90° apart) on each circle. To obtain the zenith distance
of the star we require to know the circle reading B when the
telescope is pointed accurately to the zenith. We shall suppose
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for the moment that the horizontal wire is fixed in the foca]
plane of the object-glass. The reading R can then be determined
by pointing the telescope downwards towards the basin of
mercury and moving the telescope gradually (by slow-motion
screws) until the horizontal wire and its image coincide when
viewed in the special eye-piece of Fig. 41; the addition of 180°
to the reading of the circles in this position gives the reading R,
corresponding to the position of the telescope when pointing to
the zenith. The difference between the readings R and R, is the
meridian zenith distance of the star. This zenith distance of
course contains the refraction and when the latter is removed
we obtain the true zenith distance of the star. The latitude being
presumed known, we finally deduce the declination of the star.
But in practice it is inadvisable to attempt the delicate adjust-
ment of the instrument just contemplated. As we invariably
know the approximate declination of the star to be observed,
the telescope can be pointed with sufficient accuracy to ensure
that in due course the star will appear in the field of view.
Generally, it will appear to move (disregarding a slight curvature
in its path) parallel to and at some distance from the horizontal
wire. In this position of the telescope the circles can be read
either before or after the star’s appearance. Let the reading be
R,. Now assume that the horizontal wire can be moved parallel
to itself by means of a micrometer to such a position that the
star appears to travel along the wire. Let the two micrometer
readings be M, and M,, the former the original reading (corre-
sponding, say, to some definite reading on the micrometer head)
and the latter the reading when the star travels along the wire.
The value of one revolution of the micrometer can be found in
terms of seconds of arc by observations of two stars of known
declination which are close together in the sky; with the
telescope fixed, the difference in declination can be measured in
terms of the micrometer scale and hence the value of this scale
(in seconds of arc) can be deduced. Now, corresponding to M,,
there is the particular reading R of the circles when the telescope
is pointing accurately to the zenith; the zenith distance of the
star is not quite the difference between R and R,, as in the case
of the fixed horizontal wire; we have to apply to this difference
a correction given by (M, — M,) expressed in seconds of arc.
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Thus the zenith distance of the star is deterniined and its de-
clination can be deduced as before.

54. The measurement of right ascension.

The point on the celestial equator from which right ascensions
are measured is the vernal equinox, whose position is given by
the centre of the sun about March 21 when the sun passes from
south declination to north declination. At the summer solstice
(about June 21) the sun has reached its maximum northerly
declination and then its declination is simply the obliquity of
the ecliptic. Observations of its meridian zenith distances on
several days before and after the solstice will lead to an accurate
value of its declination exactly at the solstice; in other words
the obliquity of the ecliptic can be found. It is to be noticed
that in these considerations it is the sun’s centre that is specified ;
in the actual observations the meridian zenith distance of the
upper (or lower) limb is measured ; to obtain the zenith distance
of the centre, the sun’s semi-diameter (the angle subtended at
the observer by a radius of the sun) requires to be added (or
subtracted).

Since the vernal equinox is so closely associated with the sun,
it follows that the right ascension of any star is fundamentally
related to the position of the sun on any day. Let us suppose
that the complete observation of the sun on a particular day
gives

(i) the clock time T (corrected for the instrumental errors
a, b and c¢) of the transit of its centre, and

(ii) the zenith distance of its centre at transit.

Assuming that we know the latitude accurately we deduce,
as in the previous section, the declination of the sun’s centre
[we omit in this discussion the correction due to ““parallax” (see
Chapter 1x)]. From the declination and the value of the ob-
liquity ¢ (which we shall assume known), we can calculate the
right ascension « of the sun at the time of transit on the day in
question. In the triangle 7’S4 (Fig. 44), PSA is the meridian
through the sun S, and SAT = 90°, T4 = ¢, AS = §, 874 = «.
By formula D,
cos & cos 90° = sin a cot 8 — sin 90° cot e,

or sine=tandcote ... (21).
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From (21) we obtain «, the sun’s right ascension at the moment
of transit on the day concerned. Let E be the error of the
sidereal clock at the time T' of transit. Then the true sidereal
time of transit is T+ E.
But this is precisely the
sun’s right ascension e.

Hence , _py g

Suppose that the transit
of a star is observed after-
wards, as soon as practic-
able, Let the clock time
of transit be T (we sup-
pose that both T, and T
have been corrected for
the instrumental errors a,
b and ¢). The error of the
clock may now be pre-
sumed to be slightly diffe-
rent; let it be E,. Then, if ¢, is the star’s right ascension,
a="T+E8 .. (23),
8o that, from (22) and (23),
g—ac=(T,— T+ (E,— E) veees.(24).
(T'y — T')is the interval by the clock between the times of transit
of the sun and star and is therefore known. If the clock neither
gains nor loses, (E, — E) = 0, so that ¢, can be found from (24).
Generally, however, the mechanical perfection of the clock
cannot be presumed and as a convenient hypothesis the clock
may be supposed to gain (or lose)—over an interval of a few
hours—at a uniform rate, so that (¥, — E) is proportional to the
interval between observations; we can write
E - E=r(T-1T),
so that (24) becomes
g—a=(1+nrT,—-T) venes.(25).
Supgose that the observations are repeated next day. Then we
shall have G—o =) = T) (26,

Fig. 44.
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in which o’ is the sun’s right ascension calculated from (21) and
17, T are the sidereal times of transit of the sun and star re-
spectively. I'rom (25) and (26) we have by division
a-o ?l' =T e (27),
a—a T,-T
from which the right ascension e, of the star can be calculated.
This, in brief, is the fundamental principle involved in the
easurement of the right ascensions of the stars. In practice,
we may assume that the right ascensions of a sufficiently large
number of stars have been accurately measured; such stars—
“fundamental stars”—form a series of reference points on the
celestial sphere and by means of them (or a selection of them)
we are enabled to determine the right ascension of any other
star by observing the interval between the transits of one or
more fundamental stars and of the star in question, as in the
case of the sun.

55. The measurement of time.

Stars which are selected for the determination of clock error
and hence of the accurate sidereal time—and, by a further step,
of the accurate U.T.—are called “clock stars”. If o, «, are
the known right ascensions of two clock stars, T, T, the ob-
served times of transit (both corrected for the instrumental
errors of azimuth, ete.), E,, E, the clock errors at the respective

times of transit, then o0, =T,+E,,

ao=T,+E,.
oy, & are both known, 7, and T, are observed, hence E| and E,
are found. The clock rate r is obtained from the equation
Ey,—E,=r (T,-T,).
In practice several stars are observed to ensure greater acecuracy
in the values of the clock error and rate.

The modern clocks now installed in several important observa-
torics are the most accurate time measurers ever devised. The
time which they record is so nearly uniform that it may be con-
sidered as conforming to the Newtonian deseription of time as
“equably flowing "—as for E.T.—and the normal behaviour of a
modern clock is such that its error on any day can be almost
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exactly predicted several months in advance. In the past the
performance of a clock was checked by meridian observations of
the stars. Today the situation is reversed and it is variations in
the earth’s period of rotation that are determined from these
observations.

EXERCISES
[Symbols used:
¢ = latitude, b = level error,
a = azimuth error, ¢ = collimation error.]

1. If o and b are the only errors of a meridian circle, show that the time of
transit of a star will be unaffected if its declination 8 is given by

8 = ¢ + tan™! (b/a).

2. Prove that the error in the time of transit of a star due to the three
instrumental errors is a minimum for a star whose declination is

gin™! {{a cos ¢ — b sin ¢)/c}. [Coll. Exam.]

8. If two stars of declinations §, and §, can be found for which the three
errors of adjustment produce no error in the time of transit, show that the
correction to be added to the observed time of transit of a star of declination § is

2c sin § (8§ — 8,) sin & (8 — &) sec 8 sec & (§; — &). [M.T.]

4. If the observed time of transit of a star whose declination is 30° is found
to be correct, while the observed times for stars of declinations 15° and 60° are
found to be — 7%-4 and + 31%5 in error, show that the error to be expected for
a star in declination 45° is approximately 11 seconds. [M.T.]

5. In a transit instrument of 10 feet focal length, which is in correct adjust-
ment except for collimation error, a star of declination 60° is observed to cross
the meridian 2# too soon. Show that to adjust the instrument the cross-wires
must be moved a distance of 0-0087 inch. [M.T. 1900.]

8. The level constant b and the collimation constant ¢ of a transit instrument
are determined, in the usual way, with a possibility of errors Ab, Ac, respectively.
The azimuth constant a is determined by observations of a polar star and of an
equatorial star. Show that the resulting possible error in a is given by

Aa = Ab tan ¢ + Acsec ¢,
where ¢ is the latitude.

Prove also: Am = Absec ¢ + Actan ¢,

An = — Ac. [Lond. 1926.]

7. On the same day, the observed sidereal times of transits of two stars,
corrected for the level and collimation errors, in latitude 51°30’ N are
188 51m 2752 and 190 7m 38s.9, Calculate the azimuth error and the clock
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error, given the co-ordinates of the two stars as follows:
a; = 182 51m 36s-5; §, =+ 89°2".
ag= 78 7m118.2; 3§, = 4 87°10". [Lond. 1926.]

8. Prove that a displacement of the pole of the earth’s rotation by s feet
in longitude L produces a change in the azimuth error of a meridian circle in
latitude ¢, longitude I, of s/a sin (I — L) sec ¢ cosec 1"/, where a is the radius
of the earth in feet. Estimate roughly the maximum value of this displacement
for an observatory in latitude 60°, and discuss the possibility of detecting it in
the routine of meridian circle observations. [Lond. 1922.]

9, Assuming that the instrumental correction for a transit instrument is of
the form
r=m+ntand + 3ecd,

prove that the correction will be positive for stars of all declinations if

c>|n,
and
m+ (c2 —n?)t >0,

10. A meridian circle of unknown instrumental errors has been set up at a
gite of inexactly known latitude and longitude. Outline a method for the deter-
mination of the following quantities a, b, ¢, AT, m, n, ¢, and A, where these
symbols have their usual meanings.



CHAPTER V
PLANETARY MOTIONS

56. Introduction.*

The nine major planets in the order of increasing distance from
the sun are Mercury, Venus, the Earth, Mars, Jupiter, Saturn,
Uranus, Neptune and Pluto. The laws according to which the
planets move with reference to the sun were discovered by John
Kepler (1571-1630), and half a century later Kepler’s three laws
were shown by Sir Isaac Newton (1642-1727) to be deducible
from the law of universal gravitation which he stated in the
Principra in 1687. A complete investigation into the motions of
the planets is the province of Dynamical Astronomy and as such
is outside the scope of this book. But certain principles and
results relating to the planetary motions and, in particular, to
the earth’s motion are necessary if we are to understand clearly
gome of the problems with which Spherical Astronomy is more
closely associated.

67. Kepler’s first law.

Kepler’s first law states that the path, or orbit, of a planet
around the sun is an ellipse, the position of the sun being at a
focus of the ellipse. Fig. 45 shows an ellipse of which § and F

1]

)

]

]

.
B 4

F ¢c 8 4
N
Fig. 45.

* In this chapter the time is assumed throughout to be expressed in terms of
Ephemeris Time (£.7.); v. Appendix E (p. 424).
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are the two foci, C is the centre (midway between S and F) and
AB is the major azis. The sun will be supposed to be at S and
the planet to move round the ellipse in the direction of the
arrows. At A, the planet is nearest the sun; it is then said to be
in perthelion. At B, it is furthest from the sun and it is then said
to be in aphelion. CA is called the semi-major axis; its length is
denoted by a. CD, drawn perpendicularly to €4, is the semi-
minor axis, denoted by b. The ratio CS: C4 is called the eccen-
tricity which we denote by e. The semi-minor axis & can be
expressed in terms of a and e by the formula
b2=a%(l—e¥) . (1).

The perihelion distance S4 is a (1 — ¢) and the aphelion distance
SBis a (1+ e).

If P is any position of the planet in its orbit, SP is called the
radius vector (denoted by r) and the distance SP is the helio-
ceniric distance, that is, the distance of the planet {rom the sun.
Let SN be a reference direction in the orbital plane. Then the
position of P is specified by the radius vector r and the angle 6
which SP makes with SN, 8 being measured in the direction
of the planet’s motion. Let w be the value of 6 when the
planet is in perihelion, that is, at 4 so that NSA = w. Then
PS4 = 0 — . The equation of the ellipse is known to be

- P
r"l+ecos(0—w) """ (2),
in which p=>b¥a=a(l—et ... (3).

The time required for the planet to describe its orbit is called
the period which we denote by 7. The earth’s orbital period is
the year which, for the present, may be taken to be 365} mean
solar days.

58. Kepler's second law.

Kepler’s second law states that the radius vector SP (Fig. 45)
sweeps out equal areas in equal times. Let P correspond to the
planet’s position at time ¢ and @ its position at time £ + Af. Let
r 4+ Ar denote the radius vector S and 6 + Af the angle QSN.
Then QS’P = Af. If Af is sufficiently small, the arc PQ may be
regarded as a straight line and the area swept out in the in-
finitesimal interval At is simply the area of the triangle QSP,
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that is, }r (r + Ar) sin A6, or, with sufficient accuracy, 3r2A6.
The rate of description of area is this last expression divided by
At; as this rate is constant according to Kepler’s second law, we
can write

. d0

T Z=r e (4),

where %, a constant, is twice the rate of description of area by
the radius vector.

Now the whole area of the ellipse is mab and this is described
in the interval defined by the period 7. Hence

2ﬂab [=4
T = h ...... (0),
or, using (1), 2aa’ (IT_ e} =h .. (6).

In time T, the radius vector sweeps out an angle of 360° or
2. Let n denote the average rate of description of angle by the
radius vector. Then n=2n/T (7).

n is called the mean angular motion of the planet. In moving
from SP to SQ the radius vector sweeps out the angle Af in the

interval Af. At P the angular velocity is thus g—?; thus » is the

mean value of ;lltg for all points in the orbit. By the help of (7),

formula (6) can be written
na?(l—e2p=h ... (8).

59. Kepler's third law.

Kepler’s third law, expressed mathematically, is as follows.
Let a, a, be the semi-major axes of two planetary orbits and
T, T, the corresponding orbital periods. Then, by the third law,

3 3
a® a

1—,2 = T? ...... (9),
or, using (7), n%a® = n%q,®* 000 .l 10y,
in which » and »; are the mean angular motions in the twoorbits,

We have from (9) §
G (£> ...... (11).
a 1
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If a, T refer to the earth’s orbit around the sun, the ratio of the
gemi-major axis of the orbit of any planct P, to the semi-major
axis of the earth’s orbit is given by (11) when the orbital period
T, for the planet P, is known in years, since for the earth 7 ig
one year. The orbital periods of the planets are known from
observations (see section 80) and hence their semi-major axes
can be derived in terms of a as the unit of distance. The semi-
major axis a of the earth’s orbit is known as the asfronomical
unit of distance. Expressing 7', in years, we have from (11),
putting ' =1 year,

a, = (T)? astronomical units.

80. Newlon’s law of gravitation.

The statement of this law is as follows. Every particle of
matter attracts every other particle of matter with a force
proportional to the product of the masses of the two particles
concerned and inversely proportional to the square of the dis-
tance between them. Stated mathematically, the law is:

mm,
e

F=a

where m. m, are the masses of the particles, r the distance
between them, £ the gravitational force of attraction and G a
constant—the constant of gravitation. In the c.g.s. system of
units, the value of G is 6:670 x 10-8, which means that the force
of attraction between two particles each of 1 gramme in mass
and separated by a distance of 1 centimetreis 6:670 x 10-3dynes.
For our present purpose we can regard the sun and planets as
“particles”.

The application of the law of gravitation (12) to the motion of
a planet around the sun leads to the three laws of Kepler. Let
M, m denote the masses of the sun and a planet respectively
and let u be defined by

p=Q@M+my .. (13).
Then it is found that the constant A in formula (4) is given by

R=pup=pa(l—e?) ... (14).
But, by (8), h? = n2at (1— e?).

Hence nal=pu=G M+m) ... (15).
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For another planet,
mlald=pu=G@M+m) ... (16).
Hence from (15) and (16),
n*a® M+im
n2a® M4 m,’

@ _M+m T (17)
= Mim TE T .
The equation (17) gives the correct form of Kepler’s third law
which in our notation had been expressed by (9). Actually the
mass of a planet is very small compared with that of the sun and
M+m
M+ m,
consequently, Kepler’s third law, although not strictly accurate,

is nevertheless a very good approximation.

or, using (7),

so the quantity in {17) is very nearly equal to unity;

61. The masses of the planets.

The formulae of the preceding section enable us to calculate
the mass of any planet, which is accompanied by one or more
satellites, as a fraction of the sun’s mass. If m, a, T refer to the
earth, we have, by (7) and (15),

3

G (M + m) = 4n? ;‘—,-2 ......
Now the motion of a satellite around a planet is given by the
same laws as the motion of a planet around the sun. In the case
of the satellite, the planet is the controlling body and if m,, m’
are the masses of the planet and the satellite respectively, a, the
semi-major axis of the satellite’s orbit around the planet, and
T, the period of its orbital revolution, Newton’s law of gravita-
tion leads to an equation analogous to (18); it is

3
@ (my+m') = 4#%1-2 ...... (19).
1
Hence, by (18) and (19),
m+m’ a)\3/T\?
arna) @) 20)

Now the mass m’ of the satellite is small compared with the mass
of the planet m,;; hence in (19) and (20) we can neglect m'.
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Similarly we can neglect the earth’s mass m in comparison with
the sun’s mass M, and (20) can be written

%;=<%>Y%§2 ...... (21).

We shall suppose that the semi-major axis a, of the satellite’s
orbit is known in astronomical units and that its period of
revolution 7', is also known in terms of years. Then in (21),
a = 1 astronomical unit, 7' = 1 year, and therefore the ratio of
m, (the planet’s mass) to M (the sun’s mass) is determined.

As an example we shall find the mass of Mars (in terms of the
sun’s mass) from the relevant orbital elements of the satellite
Deimos. The semi-major axis of the orbit of Deimos around
Mars is 0-00015695 astronomical unit; its period of revolution

. 1-26244
is 1-26244 day or 3651
Hence, by (21)
(3651)7
5
31 = (0-00015695)° x "0
1
~ 309 x 108

that is to say, the sun’s mass is rather more than three million
times the mass of Mars.

62. Perturbations of the elements.

We have assumed so far that the path of a planet around the
sun is determined by the mutual gravitational attraction of the
planet and the sun only. But every other planet and body in
the solar system exerts a gravitational attraction on the planet
concerned and the effects are shown in small changes in its
orbital elements such as the semi-major axis @ and the eccen-
tricity e. Such changes are known as perturbations of the elements;
in general their values are small. The magnitude of any per-
turbation due to a particular disturbing planet depends, among
other things, on the mass of the latter and it is thus possible to
deduce from observations, in combination with the formulae of
Dynamical Astronomy, the masses of planets which are un-
accompanied by satellites. In this way, the masses of Mercury
and Venus (which have no satellites) are derived. These two
planets have, however, been visited by space probes, and while



104 PLANETARY MOTIONS

the space probe is passing close to the planet it is effectively an
artificial satellite of that planet. A slight variant of the method
of section 61 can then be applied to give a much more accurate
value for the planet’s mass.

63. The dynamical principles of orbital motion.

Let S and P be the positions of the sun and a planet at any
time ¢ and let their co-ordinates referred to unaccelerated rect-
angular axes OA4, OB, OC in space be (X,, ¥,,Z,)and (X, Y, Z)
respectively (Fig. 46). If the masses of the sun and planet are

c4
P(Planet)

A

Fig. 46.

M and m, then by Newton’s law of gravitation, the planet P is
attracted towards S with the force GMm/r?, where r is the
distance SP. The component of this force in the positive direction
of the axis 04 is

GMm X,— X or _GMm (X - X))

r3 r 73

. 2]
It X (E ddt2Y> denotes the acceleration of P parallel to 04, we

have, by Newton’s second law of motion,

Now gravitational attraction is mutual and the sun S will be
attracted towards P with the force GMm/r? and the component
of this force parallel to OA is
GMm(X — X))
r? r
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If X, is the acceleration of the sun parallel to 04, we have as

before
i, A X=X,

Dividing (22) by m and (23) by M and subtracting the resulting
equations, we obtain

XX =-@M+m)
There are two similar equations in ¥ and Z.
Write ¢é=X-X,, 9=Y-1Y,, {=2Z-2Z,.
Then (¢, n, {) are the co-ordinates of the planet P referred to

rectangular axes passing through the sun, and we have from
(24), writing u for G (M + m) as in (13),

(X—_,a&—) veeeen(24).

£+ 5:5 -0 (25)
Similarly i+ fl=0 L (26),
¢+ ’ﬁf -0 .. (27)

These are the equations of motion of the planet P with reference
to the sun.
Multiply (26) by { and (27) by 5 and subtract. We obtain

. a .. ¢
that is, p (L — pt) = 0.
Integrating, we have li—nt=4 ... (28),

in which 4 is a constant of integration.
In a similar way, we derive from (25) and (27) and then from

(25) and (26), g-E=B ... (29),

and nE—-én=C ... (30),
in which B and C are constants of integration.
Multiply (28), (29) and (30) by £, %, { in order and add. Then
A+ Bp+CL=0 ... (31),
which is the equation of a plane passing through the origin of
the £, #, { co-ordinates, that is, passing through the sun S. The
interpretation is that, as the co-ordinates (£, #, {) of the planet
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P satisfy the relation given by (31), its motion with respect to
the sun takes place in a plane. This plane is the orbital plane.

64. The equation of the orbit.

We can now refer the motion of the planet to two axes passing
through the sun and lying in the orbital plane: let (z, y) be the
co-ordinates of the planet referred to these axes. In Fig. 45, we
shall suppose that SN is the z-axis, the y-axis being at right
angles to SN and of course in the plane of the orbit. The equa-
tions of wmotion of the planet are then

Etpn=0 e (32),

" Yy
y+ ;L;-s=0 ...... (33).

These equations, in rectangular co-ordinates, will now be trans-
formed in terms of the polar co-ordinates r and 8. (In Fig. 45,
SP = r and NSP = §.) We have

z=rcosf and y=rsinfd
Let « and B denote the components of the acceleration of the
planet P along SP and at right angles to SP respectively. Then

a=%Zcosf+ §sinf
and B=9cos®— &sinf eeeea(36).
We have, from the first of (34),
#=7rcosf@—rsinf.0,

and &=*cosf—2/sinf.0—rcosf.02—rsinf.§ ...(37).
The expression for §j can be derived in a similar way; it is
§j=#sinf 4 2/cos 0.0 —rsin8.02+rcos 6.0 ...(38).

Inserting in (35) the values of £ and § given by (37) and (38), we
obtain, after some reduction,

a=F— rf? (39).

But by (32) and (33),
a=Zcosf+isinfd= -—rp'(xcos0+ ysin 8)

3

Hence F— = — ’iz
r
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By a similar procedure, we find that
B =2/0+rf = 0.

. - 14
But 279 + rf = ;_ az (7'29).
Hence %(729) =
and by integration =L (41),

where £ is the constant of integration. Thus (41) is the mathe-
matical expression of Kepler’s second law which we considerec
previously in section 58.

The equation of the path of the planet around the sun can now
be derived from (40) and (41); it is, of course, a relation betweer
r and 6. The process consists in eliminating the time ¢ from (40
by means of (41); in these equations the time occurs only in the
differential coeflicients. We shall write for convenience

1

=— e 42
u=2 (42),

so that, by (41), 6=nhur (43).
dr 1 du 1du do

Now =@ uw—“mmy @
Hence, by (43), F=— h 30
Again, f= % (F)= 7 (r) Zf
== ’“‘zgf)(" Z'Z)’

so that = — htu? g%g ...... (44).
Also, using (43), 6% = R L (45).
Hence (40) becomes, by means of (44) and (45),

— h2u? Ciwl—t — hPud = — pu?,
or ‘2292 +u= ;’; ...... (46).

The general solution of (46) is given by
= ]_; [1+ecos(§ —w)]  aoeees (47),
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in which ¢ and w are the two essential constants of integration,
or by (42
y (42 po P L (48).

14 ecos (6 — w)
This last equation is identical with (2)—the equation of an
ellipse—if p = h%/u, that is, making use of (3), if

A= pa (I—-€% ... (49),

which is equation (14) previously considered. The constant of
integration e is seen to be identified with the eccentricity.

It is to be remarked that (48) is the general equation of a conic
section which may be

(i) an ellipse,ife<1,

(ii) a parabola, if e =1,

(iii) a hyperbola, if e > 1.
Although case (i) is that with which we are closely concerned
here, the extension of the possibilities concerning the motion of
a body under the gravitational attraction of the sun should be
noted.

The equation (41) is simply the mathematical expression of
Kepler’s second law. Also, by defining the mean angular motion
n as in (7), we are led—using (5), (7) and (49)—to the formula

niad=p =G (M+ m)
already mentioned. Thus from the single law of gravitation we
have derived the mathematical equivalents of Kepler’s three
laws.

65. Velocity of a planet in its orbit.

Let V denote the velocity of the planet at the point P in its
orbit (Fig. 47). V will be directed along the tangent PT. The
components of ¥ are (i) 7 along the radius vector in the dircction
PR, and (ii) r6 along PL at right angles to the radius vector.
We thus have

Ve=vg24 262 ... (50).
Now f=—h Z——g R
du I

and from (47) —esin (0 — w),

e~ " Rt

so that r'-——%esin @—-w)y (51).
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Also, since 720 = }, we have
- _ M
0 = hu—ﬁ [T+ ecos (—w)] ... (52).
Hence, squaring (51) and (52), we have from (50)
2
Vi= % [1+ 2ecos (0 — w) + e?],
which can be written

2
V2= %[2-}- 2ecos (0 — w) — (1— e?)],

. 2
or, using (47), V2= 2uu — 5—2 (1— e2).

Fig. 47.
But from (49) h? = pa (1— e2).
Hence we obtain, writing 1/r for u,
2 1
2 . -
V “<r a) e (33).

This formula gives the velocity V as a function of the radius
vector r.

It is seen from (53) that V is greatest when r is least, that is,
when the planet is in perihelion. Then r = a (1— ¢), and if V,
denotes the velocity at perihelion we have

pet l1+e
! 7 e 1—e
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Similarly, the velocity is a minimum when r is a maximum, that
is, when the planet is in aphelion. If V, denotes the velocity at
aphelion, we obtain

—

e="t. _;;‘5 ...... (53).

From (564) and (55), ViVy= Z’.

[
®

Thus the product of the linear velocities at perihelion and
aphelion is independent of the eccentricity of the orbit.

66. Components of the linear velocity perpendicular to the radius
vector and to the major axis.

We now derive a theorem which will be used later in the
investigation of certain problems. In Fig. 47 let PR represent
the velocity 7. Draw P@ perpendicular to the major axis 4B
and draw E@ perpendicular to PR. Then the velocity 7 is
equivalent to (i) a velocity along PQ and represented in magni-

tude by P@Q, and (ii) a velocity parallel to QR and represented
in magnitude by @¢R. Now PS4 =0— w and by the con-
struction, PQR = 0 — w. Hence PQ = PR cosec {(# — w) and

@R = PRcot (0 — w). We thus find that the velocity # is

equivalent to (i) #cosec (f — w) along PQ,

(ii) #cot (6 — w) parallel to QR.
Now the velocity V is equivalent to # along PR and rf along
PL, PL being perpendicular to SP. Hence V is equivalent to
(i) #cosec (8 — w) along PQ, that is, perpendicular to the
major axis,
and (ii) 70 — 7 cot (§ — w) along PL, that is, perpendicular to
the radius vector.
From (51), we obtain for (i),
#cosec (0 — w) = e}? ...... (56),
and, similarly, from (51) and (52) for (ii),
rd — 7 cot (8 — w) =%

Hence (57) and (56) express the result that the velocity V of a
planet at any point of its orbit can be resolved into a constant
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Veloc%ty ©/h perpendicular to the radius vector and a constant
velocity ep/h perpendicular to the major axis.

67. The true and eccentric anomalies.

Theoretically, Kepler’s second law enables us to calculate the
position of a planet in its orbit at any time provided we know
the semi-major axis a, the eccentricity e, the time = at which the
planet passed through perihelion and the orbital period 7'. In
Fig. 48 let P be the position of the planet at time z. In the

Fig. 48.

interval (t — 7) the radius vector moving from S4 to SP sweeps
out the shaded area SPA. Now by the second law

Area SPA : Area of ellipse =t — 7: T,

that is, Area SPA = "_ab_(qi —7) ,

or, introducing the mean angular motion n (n = 2#/T), we can
write Area SPA=3nab(t—7) ... (58),

in which b is given by b2 = a? (1— e2). Thus, at a given instant ¢,
the right-hand side of (58) can be calculated when a, ¢, r and n
are known. Hence the area SPA is found and the position of
the planet in its orbit determined.

However simple this method appears theoretically, in practice
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it is inconvenient and we shall now derive the formulae generally
applied for determining the position of a planet in its orbit.
Let the radius vector SP make the angle v with S84 ; v is called
the true anomaly and it is clearly related to 8 and w by the for-
mula v=b0—w . (59).

Let a circle be described on the major axis 4B as diameter; its
radius is thus a. Let RP, the perpendicular from P to 4B, be
produced to meet this circle at €. Then the angle QCA4 is called
the eccentric anomaly which we denote by E.

By a well-known property of the ellipse

PR:QR=b:a ... (60),

where b is the semi-minor axis CD.
Now PR=rsinv and QR = C{sin £ = asin F. Hence,
from (60), rsinv=>bsinE ... (61):
Again, SR=rcosv. Also SR=CR — CS =acos E — ae.
Hence rcosv=afcos B —e) ... (62).

Square (61) and (62) and add. Then, putting b = a? (1~ €?), we
obtain, after a little reduction,

r=a(l—ecos E) eeess.(63).
Again, 2r sinzg =r{l— cos v)

=ga(l—ecosF)—a(cosE — e),
applying (63) and (62); hence

2rsin212)=a(l+ e){(l—cosE) ... (64).
Similarly, 2r cos? 12) =aq(l—e)(l+cosl) ... (65).

Divide (64) by (65). Then
v l1+e 1l—cosl

2. o= 2T PPR
tan 2 1—e 1+ cosk’
. v [l+ed E
from which tan ; = (1—_—6) tang e (66).

Thus, by means of (63) and (66), we can express the radius
vector r and the true anomaly v in terms of the eccentric
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anomaly . We now derive Kepler’s equation by means of which
the eccentric anomaly E can be expressed in terms of known
quantities. The eccentric anomaly thus entersinto our theoretical
discussion as an intermediary angle.

68. Kepler’s equation.

From our definition of the mean angular motion n we see that
the product = (¢ — 7), which occurs in formula (58), represents
the angle described in an interval (t — 7) by a radius vector
rotating about § with constant angular velocity n. We define
n (¢ — 7) as the mean anomaly, which we denote by M, so that

M=nit-+) ... (67).
Hence, from (58), the arca SPA in ¥ig. 48 is given by
Area SPA = {abM ... (68).

We now express this area in terms of the eccentric anomaly E.

The shaded area SP4 is equal to the area of the triangle PSE
together with the area RPA. Take first the triangle PSR. Its
area is 1SR.PR. But SR = CR — C8 or SR = a cos £ — ae.

Also PR = g @R by (60), and therefore PE = bsin E. Hence

the area of the triangle PSR is }ab sin £ (cos E — e). Consider
now the area RPA. Divide it up into strips perpendicular to 4B
and extend the strips to meet the circle on AB as diameter.

Consider the strip FH. Since FH = g GH, then the sum of all

the strips forming the area RPA is equal to 2 times the sum of

the strips forming the area QRA; hence
Area RPA = %.Area QRA ... (69).

But the area QRA is the area of the sector CQA4 minus the area

of the triangle QCR. But since Q@A = E, the area of CQA4 is
$a?E and the area of the triangle QCR is }a? sin F cos E. Hence
(69) becomes

Area RPA =é[%a2E — da?sin E cos F]

a
= lab (¥ — sin K cos E).
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Add to RPA the area of the triangle PSR previously found and

we obtain Area SPA = Jab (E —esin E) ... (70).
From (68) and (70), we then have
E—esinE=M=n{t—17)  .... (71).

This is Kepler’s equation. It is a relation between the eccentric
anomaly F and the mean anomaly M. If M and e are known, it
is then possible to determine the corresponding value of K. It is
to be noted, from the manner in which (71) has been derived,
that both £ and M are supposed to be expressed in circular
measure.

69. Solution of Kepler’s equation.

The general method of solution depends on deriving an ap-
proximate value of &, nearly satisfying the equation, either by
inspection or by special tables or by one of the many graphical
processes devised at different times. Let this approximate value
be denoted by E, and let the true value be E,+ AE,. Then,
rigorously, (g 4 AE) — esin (B, + AE,) = M,
or E,+ AE,— esin E,cos AE, — ecos E;sin AE, = M.
Since AZ, is supposed to be small, we can write as an approxima-
tion: cos AE, = 1, sin AE, = AE,, so that

(By —esin )+ AE,(1—ecos E)) = M.
As E, and e are known we can compute a quantity M, given by

Mo= Eo—' CSin Eo ...... (72),
so that we then obtain
M- M, _
AEO = Tmo ...... (73).

from which AE, can be calculated. Then (E, + AE,) is a more
accurate value of E. The process can then be repeated, if neces-
sary, with (E, + AE,) as a new approximation to E.

If the eccentricity is small, say less than 0-1, we obtain by
inspection of Kepler’s equation an approximate value of the
eccentric anomaly. For, neglecting the term e sin Z, we obtain
for the first approximation E, the simple result

E,= M,
and by the application of (73) a more accurate value of the
eccentric anomaly can be derived.
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When the eccentricity is large, it is not so easy to obtain an
approximate value of the eccentric anomaly satisfying Kepler’s
equation. In these circumstances the use of special tables, such
as Bauschinger’s* or Astrand’sf, or of a graphical construction,
greatly facilitates the computations. In Bauschinger’s tables,
the values of K are tabulated for different values of the eccen-
tricity e and the mean anomaly M ; then, by inspection or by an
easy interpolation, a very good approximate value E, can be
obtained. The application of (73) follows as already indicated.

Ezxample. Required to calculate the eccentric anomaly of
Mars 200 days after perihelion passage, given: e = 0-09334,
T = 1-8809 years.

The mean angular motion n is defined by n = 2#/T or
360/1-8809 degrecs per year or 1886-52 seconds of arc per mean
solar day. Hence

M = 200 x 1886'-52 = 377304’ = 104° 48 24",

If we neglect the term e sin ¥ in Kepler’s equation we can take,
as a rough value of the eccentric anomaly, £, = 105° (the value
of M to the nearest degree).

Compute now the value of M, given by (72), namely

M, = E, — esin E,.
We first notice that, in this theoretical formula, M, and E, are

necessarily expressed in circular measure. If we now suppose
them expressed in seconds of are, we have

M,sin 1" = E,sin 1" — esin B,

or M, = E,— esin E,cosec1”.
log e = 297007
log sin £,

(= log sin 105°) = 1-98494
log cosec 1" = 5-31443
4-26944 which is log 18597.
Hence M,=E,— 18597 = 105° — 5° 9’ 57",
or M, = 99°50"3".

* J. Bauschinger, Tafeln zur theoretischen Astronomie (Leipzig, 1901).
t J. J. Astrand, Halfstafcln (Leipzig, 1890).
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Then the formula (73) for AE, becomes
104° 48’ 24" — 99° 50" 3"
A= 1= ¢cos 105°
But ecos 105° = — 0-09334 sin 15° = — 0-0242.
4° 58’ 21" 17901

Hence AE, = 15945 = 1.0943 seconds of arc
= 17478"
= 4°51' 18",

Hence E,+ AE, = 109° 51’ 18",

which is a more accurate value of the eccentric anomaly satis-
fying Kepler’s equation. We ought to repeat the process again,
taking now 109° 51’ 18"’ as an approximation to the value of E,
and to continue until the required accuracy is obtained. We
leave the step thus indicated to the student.

From Bauschinger’s tables we extract the following:

e=00 e=0-1

M=104° B =104° E =109°-40
M =105° E = 105° E =110°-37

Hence, by a rough interpolation for M = 104° 48’ and ¢ = 0-093,
we derive E, = 109°-8, which is close to the result of our first
computation. The tables thus save, in this instance, the com-
putation of our approximate value of E. The tables are never
needed, however, if the interative calculation has been pro-
grammed as the process will converge ultimately in any case.

70. Summary of the formulae of elliptic motion.
We now collect the more important formulae of elliptic
motion which have been derived in the previous pages:

i _ a(l—e?

v = TF cooso

(1) n2a® = p =G (M + m)

(i) B = pa(1— et y

(iv) E—esinE=M=n(t-7) | 7 4
i 1+ e\l E

(vi) tang;— kl——fe) tan s

In these formulae a, e and 7 are elements of the elliptic orbit.
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To obtain the position of the planet in its orbit at time ¢, the
elements a, ¢, T and the period being given, the procedure is as
follows:

(a) Calculate the eccentric anomaly E by means of (iv), in
the manner outlined in section 69, or otherwise.

(b) Calculate the radius vector r by means of (v).

{(¢) Calculate* the true anomaly v by means of (vi).

(d) As a check, calculate the radius vector r by means of (i),
using the value of the true anomaly v found in (c).

71. The eccentric anomaly expressed as a series in terms of e and
the mean anomaly.

We now express Kepler’s equation in a different form, in which
we shall derive E as a series in terms of the eccentricity e and the
mean anomaly M. We have Kepler’s equation

E=M+esinE ... (75).
We shall regard e as a small fraction and the first approximation
to E—denoted by E,—will evidently be given by neglecting
esin E, so that E = M.

A more accurate value of E—the second approximation denoted
by E,—will clearly be given by writing £, (or M) on the right of

(75). Thus E,=M+tesinM ... (76).
In the same way, denoting the third approximation to E by
EB’ we write E3 =M + e sin Ea,

which by (76) becomes

E,= M +esin[M + esin M),
or E,= M 4 esin M cos[esin M] + ecos M sin [esin M.
But, since e is small, we can write this last equation

E,=M+esin M+ ecos M.esinM ... (77),
which is correct up to terms in e2. (77) is equivalent to
E;=M +esin M + }e2sin2M ... (78).

We can proceed in this way as far as we like. A further approxi-
mation will give
3

E=M+<e—%~

* In the method 10 be described in section 77 the quantities E and r are alone
calculated.

> sin M + de?sin 2M + $e3sin 3M ... (79).
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When terms containing e? and higher powers can be neglected,
formula (79) enables us to calculate the value of £ when e and
M are given.

72. The true anomaly expressed as a series in terms of e and the
eccentric anomaly.

We begin with the formula

v (1+et F
tan = (I‘—‘Z> tans (80).
. 7T
Let us define an angle ¢, lying between 0 and 5> by
sing=¢ ... (81).
Then we can write (80) in the form
1+ tan é
v 2 E
tanz = qun S s
1- tan§
or, putting tan 3: z,
v l4=z E o
tan 5= 1= tan 3 e (82).
Since 2cos 0 = e¥ + ¢ and 2isin # = ¢ — ¢~ where ¢ is
defined by ¢2 = — 1, we can write
P eivf2 _ p—iv/2 etv _ 1
tan ; =

273 (et et l7) =3 (e® ¥ I) ’

with a similar formula for tan % . Hence (82) can be written

ev—1 14z ef-1
ev+1 1~z eb+1°

. . A
from Wthh e = IW’
or e = e'F (1 — xe~E)/(1 — ze'F),

from which, by taking logarithms of both sides,
w=1E + log (1 — ze—*%) — log (1 — ze'F),

Now z = t,a,n—('zé and ¢ = sin~? (¢); hence x < 1 numerically, since



PLANETARY MOTIONS 119

e< 1. Applying the formula for the logarithmic series we derive,
after some reduction,

. z? | x?
v=FE+2 <xsmE’+ 5 sin 2E + §sin 3E + ...>...(83).

Now . b
sin® = 23
_ 2 1—cos¢ 1—(1—¢e?
x =tan | = = == ,
A e e
sm‘—zcosg
or x=13e+ e+ ... .. (84).

Hence from (83) and (84) we obtain finally
v=FE+4 (e+1el)sinF + Lle?sin 2K + Le3sin3F ...(83),

correct to the third power of e,

73. The equation of the centre.

By means of (79) and (85) we can express v as a series in e
and M. We shall keep only terms up to e3. Now in (85), K occurs
in the form sin E, sin 2E and sin 3£, and we first find from (79)
the values of these quantities expressed in terms of e and M.
Thus, by (79),

3\
sin E = sin (M + (e — %) sin M + Le?sin 2 + 3e¥sin 3M
...... (86),

but, as in (85) sin F is multiplied by the factor e, we nced only
keep terms in (86) up to €%, so that

sin B = sin [M + esin M + }e?sin 2M],
which can be expanded in the form
sin B = sin M cos [esin M + Le?sin 2.1/]
+ cos M sin{esin M + }e?sin 2M |

2
=sin M [1— % sin? M:} 4 cos M {esin M 4 Je?sin 2M]

=sin M + }esin 23 + }e? (sin 23f cos M — sin® I[)
= (1— }e?)sin M + }esin 24 + §e?sin 3M.
Similarly, keeping only the necessary terms, we derive
sin 2 = sin 2M + e (sin 3. — sin M),
sin 3E = sin 3M.
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Hence from (79) and the expressions forsin E, sin 2E and sin 3E
just found, the formula (85) becomes

v— M = (2e— Le®)sin M + Ze?sin 2M + 1iedsin 3N

This last formula is known as the equation of the centre. Its
importance lies in the fact that the true anomaly v is expressed
directly in terms of the eccentricity ¢ and the mean anomaly M.
When e and M are given, v can thus be calculated. We shall
make use of the equation of the centre in a later chapter.

74. The orbit in space.

We shall take the plane of the ecliptic as the fundamental
plane. In general, the orbital plane of any planet, other than
the earth, will be inclined at some particular angle to the
ecliptic. Suppose a sphere drawn with the sun as centre (Fig. 49).

Fig. 49.

As the planet’s orbital plane (shown shaded in the figure) passes
through the sun, it will therefore cut the sphere in a great circle
NQN’. This great circle intersects the ecliptic in two points N
and V', called the nodes. The orbital ellipse APL is drawn in the
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figure, A being perihelion; SA4 produced cuts the great circle
N@N' in A, and, if P is the position of the planet in its orbit at
any time ¢, the radius vector SP when produced will cut the

great circle NQN' in P,. Thus, since ASP is the true anomaly v,
the angle 4, 8P, or the great circle arc 4, P, is also v. In the
figure, v increases in the direction of the arrow between 4, and
P,. N is then called the ascending node and N’ the descending
node.

The angle P, NB (denoted by ) defines the inclination of the
orbital plane to the ecliptic; ¢ is simply called the inclination.
The arc NA4,, measured from the ascending node to the point 4,,
is called the argument of perihelion and is denoted by w.

Let T be the position of the vernal equinox. The arc 7.V is the
longitude of the ascending node, which we denote by 8. The sum of
the arcs TN and N A4, is called the longitude of perihelion, denoted

by @w. Hence p=0+w .. (88).

It is to be noted that it is only the part 8 of the longitude of
perihelion that is measured along the ecliptic.

0, i, w are three elements of the orbit. The longitude of the
node (#) determines the points NV and N’ on the celestial sphere
at which the plane of the orbit intersects the ecliptic; the element
1 specifies the angle at which the orbital plane is inclined to the
ecliptic; the longitude of perihelion (z) determines the direction
of perihelion with reference to the ecliptic and the vernal
equinox.

As the three elements a, ¢ and r considered in section 70 refer
to the orbital ellipse only, we now see that the complete specifi-
cation of a planetary orbit requires six elements; they are
a,e 7 8,1and w.

In Fig. 49 the sum of the arcs N and NP, is called the true
longitude of the planet in its orbit. Denote it by L. Then

L=0+w-++uv,
or, by (88), L=w+v veere-(89).

Now consider a radius vector coinciding with S4 at time 7 and
moving in the plane of the orbit with mean angular velocity n.
At time ¢, the radius vector has described the angle n (£ — 7)—
the mean anomaly M—and we shall suppose that it then inter-
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sects the sphere in Q. Thus the arc 4,Q is M. Let I denote the
sum of the arcs 7N and N@. Then
l=0+w+nit—r1),
or l=w+nit—-7 .. (90).
l is called the mean longitude of the planet.
The formula (90) is generally written in the form
l=nt+e e (91),
where € is given by E=W—NT  eeeee (92).
From (91) it is seen that e is the mean longitude when ¢ = 0. This
instant is called the “epoch” and ¢ is thus the mean longitude at
the epoch.
From (90) we have
M=nt—17)=1l—wo,
so that, by (91), M=nt+e—w.
Hence Kepler’s equation can be written
E—esnE=nt+e—w veee-{93).

Since ¢ is defined by (92) in terms of the two elements » and 7,
it may be regarded as one of the six elements of the orbit in
place of 7.

As an illustration, the elements of the orbit of Mars for the
epoch 1929 January 0, Greenwich Mean Noon, are given below:

a = 1-52369 astronomical units 0= 49°0' 36"-0
e=0-09334 1= 1°51'0"-5
e=84°49233"-9 w=334°45""7"-3

75. The heliocentric ecliptic rectangular co-ordinates of a planet.

In Tig. 50 let ST, 8B, SK be rectangular axes through the sun,
forming a right-handed system, 7' being the vernal equinox,
B the point on the ecliptic 90° from 7 and K the pole of the
ecliptic. Let P be the position of the planet in its orbit at time ¢
so that SP = r. Let P, be the point of intersection of SP with
the celestial sphere. Denote by (z,, ¥, 2,) the rectangular co-
ordinates of P with respect to the axes 87, SB and SK. Then

?: cos PSY = cos P, ST,
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or, writing the arc P,T for P,@T, we have

r=rcos P, Ll (94).
Similarly, y=rcosP. B ... (95),
g=rcos PP K L (96).

Fig. 50.

Consider now the spherical triangle P,TN in which TN =6,
NP, =w+ v and PIZVA'T =180° — 1. Then, by the cosine for-
mula A,
¢0s P,? = cos § cos (w + v) — sin & sin (w + v) cos ¢.
Hence
7, = 1 [cos 8 cos (w + v) — sin Fsin (w + v) cos 2] ...(97).
Similarly, from the triangle P, NB in which NB = 90° — ¢
and P,NB =i,
Y, =7 [sin 8 cos (w + v) + cos sin (w + v) cos 1] ...{98).
In the triangle KP, N, KN = 90°, KZ\?'P1 = 90° — 7; hence by

‘ applying formula A we derive

2y = rsin (w+ v)sin 1 eess.(99).
Thus from the formulae (97), (98) and (99) the heliocentric
co-ordinates (xy, 1, 2;) can be calculated when  and » and the

. elements 8, ¢ and w are given.

¥
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It is convenient in practice to calculate auxiliary angles
a, 4, b, and B, defined by
sinasin A =cosf; sinacosd = —sinfcosi
sin b, sin B, = sin 8; sin b, cos B, = cos § cos ¢ } 100),
in which 8 and ¢ are supposed known. Then
z,=rsinasin (4 + o + v)
y, =rsin b, sin (B, + w + v)}
2, =rsin (w + v)sins

76. The heliocentric equatorial co-ordinates of a planet.

In Fig. 51 let TC be the equator on the celestial sphere. Con-
sider the right-handed system of equatorial rectangular axes
87, SC and SQ, where C is the point on the equator 90° from 7

Fig. 51,

and @ is the north pole of the equator. Let (z, y, z) be the
co-ordinates of the planet referred to these axes. Now

BI'C = KQ = ¢, the obliquity of the ecliptic. The axes SC and
SQ can be obtained from SB and SK by rotating the latter
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about ST through the angle e. Hence we obtain the following
relations between (z, y, z) and (zy, ¥, 2,):

xr = xl
Y=1,C08€— 2 8ine veere.(102).
2=y, sine+ 2 cose
Inserting the values of z;, y; and z, given by (97), (98) and (99)
we derive the expressions for z, y and 2 in terms of 7 and v, the
elements 8, 7 and w, and e.
Define auxiliary angles b, B, ¢ and C by the following:
sinbsin B = sin @ cos ¢; sinb cos B = cos 6 cos ¢ cos e — sinisinel
sincsin C = sin #sin ¢; sin ¢ cos C = ¢0s § cos ¢ sin € + sin ¢ cos e/

Then we have z=rsinasin (4 + o + v)

y=rsinbsin(B+w+7v))  ..... (104).
z=rsincsin (C + w + v)
The convenience of these formulae is seen when the rectangular
co-ordinates are required for several positions of the planet. For
when the auxiliary quantities sin a, sin b, sin ¢, 4, B and C have
been computed by means of (100) and (103) from the known
values of the elements 6, ¢ and w, and of € they can be used in
(104) for determining the several values of (z, y, 2). For each
position of the planet the radius vector r and the true anomaly »
are supposed to be calculated in advance by the methods already
described.
An alternative method of deriving the co-ordinates (2, y, 2)
is described in the following section.

77. The heliocentric equatorial co-ordinates of a planet (alternative
method).

The heliocentric equatorial co-ordinates can be put in another
~ form* which is now favoured by computers. The first equation
of (104) can be written

z=rcosv[sinasin (4 + w)]+ rsinv[sinacos (4 + w)].
Put P,=sinasin(4 + o) and @, =sinacos (4 + w).

* Journal of the Brit. Astron. Association, vol. xxxu1, p. 231 (C. E. Adams).
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Then P, =sinasin A cos w + sin a cos 4 sin w,
which by (100) becomes

P, = cos 8 cos w — sin 8 sin w cos 4.
Similarly,

.= — c0s 8 sin w — sin § cos w cos 1,
Now by (62), r cos v = a (cos E — ¢), and by (61),
rsinv = bsin E,
where Z is the eccentric anomaly and b is the semi-minor axis of

the orbit. We then have, adding the formulae for y and z which
can be derived in a similar manner,

x=aP,cos E + bQ sin § — aeP,
y=aP,cos £ 4+ bQ,sin K — aeP,>...... (104 a),

z=aP,cos K + bQ),sin £ — aeP,
where

P, = cos0cosw— sin fsin wcost
Q.= — cos fsin w — sin § cos w cos ¢

P, = (sin  cos w + cos § sin w cos 7) cos € — sin w sin 1 sin e >
Q
P, =sinwsin?cos ¢ + (sin 6 cos w + cos § sin w cos i) sine

@, = cos wsin ¢ cos € — (sin sin w — cos § cos w cos 2) sin e

(—sin 8sin w+ cos 0 cos w cos i) cose — coswsin i sin e

For each position of the planet, the eccentric anomaly E is
calculated from the elements, supposed known. The quantities
P,, etc., are also found from the elements. The co-ordinates
(z, ¥, 2) can then be easily calculated from (104 a) for as many
positions of the planet as are desired.

78. The heliocentric rectangular co-ordinates of the earth.

In the case of the earth, the equations (104) assume a simple
form as the inclination of the earth’s orbit to the ecliptic is zero.
Writing (2, y', 2") for the heliocentric equatorial co-ordinates of
the earth at any time ¢, we obtain easily the following formulae:

"=1"cos (0 + o + )
y =1r'sin(0'+ o + v')cose veeen.(105),
Z=r'sin(0+ o +v)sine
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in which dashes refer to the respective quantities associated with
the earth’s orbit. But (8’ + ') is the longitude of perihelion for
the earth’s orbit; denote it by w’. Then

' =r'cos (v + ')

y =7rsin{®’ +v)coser ... (1086).

2'=r'sin{@ + v)sine
The values of " and v’ can be calculated for any time ¢ from the
elements of the earth’s orbit; hence z’, y’, 2’ can be obtained.

An alternative method is based on the formulae (104 a) and

(104 b); in the latter, the corresponding values of P,, etc., are
obtained by putting the inclination i equal to zero. As before,

the values of the eccentric anomaly for the earth are calculated
and the co-ordinates derived by means of (104 a).

79. The planet’s geocentric right ascension and declination.

Consider now rectangular axes drawn through the earth
(Fig. 52) and parallel to the equatorial axes through the sun
illustrated in Fig. 51. Let X, Y, Z
denote the co-ordinates of the sun Q P
with reference to the axes drawn
through E. Then it is clear that r

X=—a, Y=—y, Z=—2 P

X, Y and Z are the geocentric
equatorial rectangular coordinates E >C
of the sun and are calculable by
means of (106) as already indicated.
Their values are tabulated in the P
almanacs for every day throughout
the year.

Let (¢, 0, {) denote the co-ordinates at time ¢ of the planet P
with respect to E as origin (Fig. 52). Then since (z, y, z) are the
co-ordinates of P with respect to S as origin, we have

§=X+x;n=y+y,C=Z+z ...... (108)

Consider in Fig. 53 the celestial sphere centred at E (the
earth’s centre). The straight line joining E and the planet cuts
the sphere in . Denote the distance £P by p. Then p is the

Fig. 52.
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geocentric distance of the planet at time ¢£. Draw the meridian
@RT intersecting the equator TC in T. Denote by «, & the
geocentric right ascension and declination of the planet so that
TT = a, TR =3. Then

&/p = cos PET = cos RET,

or £ = pcos RT.
Similarly, 1= pcos RC,
{ = pcos G,

1/l ///

T

Fig. 53.

But formula A gives, for the triangle RTT (right-angled at T'),
cos BT = cos e cos 3.

Hence &= pcosacosd.
Similarly, np=psinacosd} ... (109).
{=psind
Hence from (104), (108) and (109) we obtain
peosacosd=X +rsinasin(4d+ w+ ) ...... (110),
psinacosd=7Y +rsinbsin(B+w+v) ... {111y,
psind =27 +rginesin (C+ w + ) ...... (112).

These equations in the form stated were first given by Gauss.
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Given the elements of the planet’s orbit, the right-hand sides
of (110)~(112) can be calculated for any time ¢, as we have already
explained (X, Y and Z are given in the Astronomical Ephemeris).
Thus dividing (111) by (110) we obtain
Y + rsinbsin (B + w + v)

X+ rsinasin (4 + o+ v)’

from which « can be derived. Similarly, by dividing (112) by
(111), we obtain an expression for tan § cosec a, from which & is
easily calculated. Thus the geocentric right ascension and de-
clination of the planet can be derived for any time ¢. The ob-
served position will then be the geocentric position as calculated,
modified by the correction for refraction and certain other
corrections to be discussed in later chapters.

We have thus indicated how the position of a planet in the
sky at any time can be derived from a knowledge of its orbit.

The converse problem—the determination of the elements of a
planetary orbit from an adequate number of observations—is one
of much greater difficulty. A vast amount of astronomical litera-
ture is devoted to this problem alone and the subject is outside
the scope of this book. The reader is referred, for the general
principles of the methods of determining orbits from observa-
tion, to Dynamical Astronomy by H. C. Plummer (Cambridge,
1918) or to Bahnbestimmung der Planeten und Kometen by
G. Stracke (Berlin, 1929).

tan ¢ =

80. The orbital and synodic periods of a planet,

We have assumed throughout this chapter that the orbital
period of a planet is known and we now indicate how this period
can be obtained from observation. We shall take the simple case
when the planet’s orbital plane is assumed to coincide with the
plane of the ecliptic and the orbits of the earth and planet are
assumed to be circular (Fig. 54). In this figure, the planet con-
sidered is taken to be an outer planet, for which the heliocentric
distance is greater than the heliocentric distance of the earth.
At some moment, let the sun, the earth and the planet be
collinear as at S, K, and P, respectively. The earth and planet are
then said to be in heliocentric conjunction. As viewed from the
earth at E, (we neglect the dimensions of the earth in comparison
with the dimensions of the orbits concerned), the planet’s
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position P, will be diametrically opposite in the sky to the posi-
tion of the sun; the planet is then said to be in opposition. 1f
heliocentric conjunction occurred at a particular place—say,
Greenwich—at apparent midnight (when the sun’s hour angle
is12b)the planet would thenbe
on the meridian of the place;
this instant could be deter-
mined accurately from obser-
vation of the planet with the
meridian circle. Thisparticular
assumption, however, is un-
likely to be realised in practice
and so observations must be
made on a few nights before
and after the expected helio-
centric conjunction. On each
night the difference between Fig. 54.

the right ascensions of the planet and the sun, at the moment of
transit of the planet, can be determined; on some nights this
difference will be a little less than 12b and on other nights a little
more than 12k, By interpolation the instant at which the differ-
ence is precisely 128 can be derived. This gives the time of
heliocentric conjunction. Let this time be denoted by ¢,.

Let t, be the time at which the earth and planet are next in
heliocentric conjunction and let their respective positions be
E,and P,. Since the planet is at a greater distance from the sun
than the earth, by Kepler’s third law its mean angular velocity
is less than that of the earth. Hence at the end of the interval
(tz — t,) the earth has described 360° + EZS'E1 or 27 + ¢, where
¢ = E2§El, and the planet has described the angle P,SP, or ¢.
Let T,, T denote the orbital periods of the earth and planet.

Then their mean angular motions are 27/T', and 2x/T respectively.
Hence

2m
2n+¢= 'rjfl (ta— 1),

and ‘i’ = 2/113 (e —1).

Hence, eliminating ¢,

(t;— &) <11,1 - 7}) =1 veeee-(113).
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The interval between two successive heliocentric conjunctions in
longitude is called the synodic period of the planet, which we
denote by S. Hence S = ¢, — ¢, and therefore, by (113),

1 1 1

S=T, T

Now, for the earth, T, is one year. Also § is obtained from
observations and if it is expressed in terms of the year as unit
we derive the formula for the planet’s orbital period 7', in the
same unit, as

or T= 20 (114).

For an ¢nner planet, the period 7" is given by
’ S’
T=ivg
where S’ is the corresponding synodic period.

For the outer planets, the synodic periods are evidently
greater than one year. IFor Mercury and Venus the synodic
periods, found in this way, are 116 and 584 days.

Owing to the assumptions made in this section with reference
to the orbits of the earth and the planet under consideration, the .
orbital periods derived in this way are approximate; accurate

values can only be obtained from a more thorough study of the
planetary orbits.

81. The earth’s orbit.

The eccentricity of the earth’s orbit is 0-016739 and the longi-
tude of perihelion is 101° 45" 8""-1; these quantities refer to the
beginning of 1931.

The stdereal year is defined to be the interval between two
successive returns of the earth to the same point among the stars
as viewed from the sun. The sidereal year is 365-2564 mean solar

days.

82. The sun’s apparent orbit.

For many of our purposes, it will be convenient to consider
the sun’s apparent orbit, that is, the orbit it appears to describe
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relative to the earth. The eccentricity is, of course, the same as
that given in the previous section.

The point of the orbit at which the sun is nearest the earth is
perigee and the point most remote is apogee. As the direction of
perihelion (as viewed from the sun) is exactly opposite to the
direction of perigee (as viewed from the earth), it follows that

v=mwuw+ 180° .. (115),
where w denotes the longitude of perigee and m, denotes the
longitude of perihelion.

It is clear that the sidereal year is the interval between two
returns of the sun (moving in the apparent orbit) to the same
point among the stars, as viewed from the earth.

The tropical year is defined to be the interval between two
successive passages of the sun through the vernal equinox. As
we shall see in a later chapter, the vernal equinox is not a fixed
point on the ecliptic, as we have hitherto assumed it to be, and
consequently the tropical year differs somewhat in length from
the sidereal year. The tropical year is 365-2422 mean solar days.
When the term ““year” is used without any qualifying adjective
it is the tropical year that is referred to.

Owing to the gravitational attraction of the planets on the
earth, the elements of the earth’s orbit are not quite constant.
In particular, the longitude of perihelion (or, by (115), the
longitude of perigee) undergoes small changes. The interval
between twosuccessive passages of the earth, in its orbit, through
perihelion—or the interval between two successive passages of
the sun, in the apparent orbit, through perigee—is called the
anomalistic year, which is 365-2596 mean solar days.

83. The moon’s orbit.

The formulae which we have derived for the motion of a planet
around the sun are applicable to the motion of the moon around
the earth. The moon’s orbit in space is defined with reference to
the ecliptic as in the case of a planet and the appropriate figure,
corresponding to Fig. 49, would be identical in character with the
latter, with this exception, that the centre of the celestial sphere
is now E (the earth) instead of S (the sun). The longitude of the
moon’s node, the longitude of perigee (the point of the moon’s
orbit nearest the earth—the furthest point is apogee) and the
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inclination of the orbital plane are defined in the same way as
in section 74.

So far as the gravitational attraction of the earth alone is con-
cerned, the moon’s orbit would be an ellipse; but, owing to the
gravitational influence of the sun and—to a lesser degree—of the
planets, the elements of the orbit undergo considerable changes
—perturbations—which have to be taken into account in many
problems with which the moon is associated and, in particular,
in the theory of precession and nutation, to be discussed in
Chapter x.

The synodical month is the interval between two successive
“new moons”’. New moon occurs when the geocentric longitudes
of the sun and moon are the same. The average value of the
synodical month is 29-5306 mean solar days.

The sidereal month is defined to be the interval given by the
moon’s complete circuit of the stars as seen from the earth; its
mean value is 27-3217 mean solar days.

Owing to the perturbations, the direction of perigee is altering
and the interval required by the moon to move in its path around
the earth from perigee to perigee is called the anomalistic month;
its value is 27-5546 mean solar days.

Again, owing to perturbations, the moon’s ascending node has
a backward movement along the ecliptic, the longitude of the
node decreasing at the rate of nearly 20° per annum (the period
required by the moon’s node to make a circuit of the ecliptic
is 18-6 years). The nodical month is defined to be the interval
between two successive passages of the moon through the
ascending node; its value is 27-2122 mean solar days.

EXERCISES
{Symbols used:
a = semi-major axis of orbit, E = eccentric anomaly,
e = eccentricity, M = mean anomaly.]

v = true anomaly,

1. If the semi-major axes of the orbits of Mercury and Jupiter are 0-387 and
5203 astronomical units and Jupiter’s orbital period is 11-862 years, show that
Mercury’s orbital period is 0-2406 year.

2. Neglecting the mass of the first satellite of Jupiter, calculate the mass of
this planet in terms of that of the earth from the following data:
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Period of first satellite: 14 18% 28m,

Mean distance of first satellite from J upiter’s centre: 267,000 miles.

Radius of the earth: 3960 miles.

Acceleration of gravity at earth’s surface: 32-2 feet per second per second.

[Lond. 1926.]

8. The orbital period of Jupiter is 4333 mean solar days and Jupiter’s mass is
1/1048 times the sun’s mass. Show that the period of a small body, of negligible
mass, moving in an elliptic orbit round the sun with the same major axis as that
of Jupiter, is 433575 days. [Lord. 1930.]

4. If 7 is the orbital period of a planet, show that a small increase A in the

TAa

2a
5. If ¥, and ¥, are the linear velocities of a planet at perihelion and aphelion
respectively, prove that (1= ¢) Vy=(L+¢) T,

8. If e = sin ¢, prove that
tan; = tan (45° + }4) tan } E.

7. TIf e = sin ¢, show that, when powers of e above the second are neglected,
the value of £ satisfying Kepler’s equation is given by

tan E = sec ¢ tan 2y,

S . . . 3
semi-major axis a will produce an increase

in the period.

where tan y = tan (45° + }¢) tan 3 M,
and tan E = sin M/(cos M — e).
cos B —e
8. Prove that COSY = s
. (1- ez)‘} sin B
giny= ‘"~ ———

l—ecos® °

9. Prove that, if the fourth and higher powers of ¢ are neglected,
esin # 1/ esinM \3
E=2M+ 1—ecos M ——Q(l—ecosM)
is a solution of Kepler's equation. [Ball.]
10. The relevant elements of an orbit are as follows: e = 0-961733,
T (period) = 76085 years; time of perihelion passage, 1910 May 24. If
E = 101°3 is an approximate solution of Kepler’s equation when M = 47°-3
and e = 0-96, show that the value of E for 1900 May 24 is 101° 20" 33"-1. [ Bail.]

11. A comet describes a hyperbolic orbit around the sun; prove that the
velocity V is given by 2 1
Vi=p < + *)

r a)’

If its minimum heliocentric distance is k astronomical units and its maximum
linear velocity ! times the earth’s velocity, show that the angle between the
asymptotes of the hyperbola is

1 .
in=1 { ———— . 1921.
2sin <12k—1)' [Edin. 1921.]
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12. Tf 4 is the angle between the direction of a planet’s motion and the
dirceiion perpendicular to the radius vector, prove that
esin ¥
(1— et
13. A planet moves in an orbit inclined at a small angle 1 to the ecliptic;
show that, if its declination is a maximum, either the motion in latitude vanishes

or the longitude is approximately 90° + i cot e sin 8, where 9 is the longitude
of the ascending node and e is the obliquity of the ecliptic.

tany =

14. The mean distance of Venus from the sun is 0-72 of that of the earth.
Determine the greatest altitude at which Venus, supposed to have a circular
orbit in the plane of the ecliptic, can be visible after sunset in a given latitude,
and the time of year at which this may occur. [M.T.]

15. If (A}, By), (Ag, Bo) and (25, B;) are the heliocentric longitudes and latitudes
of a planet at three different points of its orbit, prove that

tan B, sin (A — A;) + tan B, sin (A, — X)) + tan Bysin (A; — Ag) = 0.
16. Prove that the equation of the centre is given in terms of the true anomaly
v by the expression
@ 217§ —(p—1) 22
p=1 p{l+2%)
where A = ¢/(1 + V1 — ¢?), e being the eccentricity of the orbit.
Show that the maximum value of the equation of the centre occurs approxi-
mately when v = 37 + sin™?! (3¢/4), e being small. [Lond. 1930.]

sin pv,

17. The perihelion distance of a parabolic comet is a astronomical units
(a < 1). Assuming that the earth’s orbit is circular and that the comet moves
in the ecliptic, show that, if ¢ (measured in years) is the interval during which
the comet is within the earth’s orbit,

f
t= %'(1 +2a)(2 — 2a)}.

18. (Euler’s Theorem.) If r and r; are the radii vectores of two points C and
C, in a parabolic orbit and if k is the distance CC,, prove that the time in the
orbit between C and C, is

T, (r+rl+k ¥ rvn -kt

st -(eamt)
where T, is the length of the sidereal year and a is the semi-major axis of the
earth’s orbit.

19. (Lambert’s Theorem.) If r and r, are the radii vectores of two points C
and C, in an elliptic orbit, k the distance CC}, ¢ the time required by the planet
to move from € to €, and 7' the orbital period, prove that

2at . .
o = —sing — (g —sing),

¥ N
where sindn=1} 'ir;i_’f> ; Sin!ﬂh=i<r+r; k) .



CHAPTER VI
TIME

84. Sidereal time.

In Chapter 11 we briefly discussed the subject of time and now
it is necessary to consider the problem in greater detail. Sidereal
time at any instant at a given place is the hour angle of the
vernal equinox. Now in Chapter 11 we regarded the ecliptic and
celestial equator as fixed great circles on the celestial sphere, so
that the vernal equinox was also regarded as a fixed point whose
direction, for convenience, we might visualise as that of a par-
ticular star. But owing to the phenomena of precession and
nutation the celestial equator can no longer be regarded as a
fixed great circle and, consequently, the vernal equinox must be
treated as a point on the celestial sphere moving slowly, ac-
cording to well-ascertained laws, with reference to the back-
ground of the stars.

Precession and nutation will be fully considered in Chapter x
but for our present purpose we shall assume certain results. In
our discussion of sidereal
time it will be sufficient to
regard the ecliptic as a fixed
great circle. Owing to pre-
cession, the north celestial
pole P (defined by the di-
rection of the earth’s axis)
describes a small circle
around the pole K of the
ecliptic in a period of about
26,000 years (Fig. 55). At
present the north celestial
pole P is a little under 1°
from the second magnitude
star ¢ Ursae Minoris (Polaris
or the pole-star), but their
relative positions are altering from day to day and from year to

Fig. 55.
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year. Two thousand years ago the pole P was 12° from Polaris
and 12,000 years hence it will be within a few degrees of the first
magnitude star Vega. It is the direction of the earth’s axis that
is altering continuously with reference to the background of the
stars.

Now consider Fig. 55, in which P is the north celestial pole,
say, at the beginning of 1900 (denoted by 1900-0) and P, its
position one year later. PP, is the arc of a small circle of which
K is the pole. FTG is the celestial equator corresponding to the
position P, and F,T7,@, is the equator one year later corresponding
to the position P; of the pole. 7 is the vernal equinox for 1900-0
and 7, the vernal equinox for 1901-0. 7 and 7', are called the
mean equinoxres at the dates in question and the corresponding
celestial equators are called the mean equators. We assume that
owing to precession the north celestial pole moves uniformly
along the small circle arc PP, and that the mean equinox moves
uniformly backwards along the ecliptic from 7 to 7,. It is found
that the motion of 7 along the ecliptic is at the rate of 50"'-3 per
annum.

Let us return to our definition of sidereal time. Suppose for
simplicity that there is a star in the direction of 7 which we shall
assume for the moment to be fixed in direction. The sidereal
time would then be defined as the hour angle of 7 or the hour
angle of the star, and the period of rotation of the earth is then
simply the interval between two successive transits of this star
(or of T') across the meridian of any particular observatory. But
when we define sidereal time in relation to the moving equinox,
we can no longer regard the earth’s rotational period to be the
interval between two successive transits of the equinox. In
Fig. 55 let CT, be a great circle arc drawn through 7; perpen-
dicularly to the equator FT'G. Then the equinox at any given
date is separating, in right ascension, from the equinox 7 for
1900-0 at the annual rate measured by 7C. But from the small

triangle 7CT,, IC =TT, cose,
where ¢ is the obliquity of the ecliptic. Hence

TC = 50""-3cos ¢,

and inserting the value of € (23° 27’) we easily find that, in time
measure, the mean equinox is separating, in right ascension, from
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T at the rate of 05-008 per sidereal day. Now the direction of
motion of the equinox is westwards in the sky—opposite to that
in which right ascension increases—and it follows that the
interval between two successive transits of the moving equinox
over any meridian is 08-008 less than the interval given by a
fixed equinox or star. The first interval is a sidereal day (defined
with reference to the moving equinox) and the second interval
is the rotational period of the earth.

Owing to nutation, the true equator at any instant is slightly
different from the mean equator at that instant. Consequently
the true equinox is displaced slightly along the ecliptic relative
to the mean equinox; these small displacements are periodic in
character, the period being about 18 years. The difference in
right ascension between the true equinox at any instant and the
mean equinox at that instant is evidently periodic in character
also and may amount numerically to 1s-2.

We define mean sidereal time to be associated with the moving
mean equinox (precession only being involved) and apparent
sidereal time to be associated with the true equinox. As the
motion of the true equinox along the ecliptic can be regarded as
compounded of (a) the uniform motion due to precession (50"-3
per annum), and (b) the small oscillatory motion, with respect to
the mean equinox, due to nutation, it is evident that the interval
between two successive transits of the true equinox over a
meridian will differ from the interval between two successive
transits of the mean equinox by a small amount which is periodic
in character. But the differences from day to day are so small
that in practice, generally, the sidereal day is taken to mean the
interval between two successive transits of the mean equinox.
As we have seen, the adopted sidereal day is 08-008 shorter than
the earth’s rotational period. Sidereal clocks are regulated
according to mean sidereal time.

When a star’s position is observed at any instant, that position
is referred to the true equator and equinox at that instant. For
example, when the transit of a star is observed, the star’s right
ascension is the apparent sidereal time of transit; or supposing
that the right ascension is known (referred to the true equator)
we obtain the apparent sidereal time of the star’s transit. This,
however, will not be the time shown by the sidereal clock, which,
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as we have said, is regulated (we assume, correctly) to keep
mean sidereal time, the difference being the small effect due to
nutation. The magnitude of this quantity, which has a principal
period of 18 years, can be derived from other considerations and
it is tabulated for every day in the almanacs under the heading
“equation of equinoxes” in the sense:

Apparent s.T. = Mean 8.T. + equation of equinoxes ...(1).

85. Ephemeris and Universal Time.

Sidereal time was defined as the hour angle of the vernal
equinox, a definite direction in space. The passage of sidereal
time is, therefore, completely determined by the rotation of the
earth, and as this is subject to irregular and unpredictable
variations, the passage of sidereal time is not uniform. The
same is true of universal time, which was defined in section 28 in
terms of the hour angle of the mean sun, a fictitious body moving
at a constant rate round the celestial equator. Notice, however,
if Universal Time is to be precisely related to Sidereal Time,
then this rate must be constant with respect to the rotation of
the earth. It is, not, therefore, a strictly uniform rate. When the
mean sun was first introduced it was not realised that the rota-
tion of the earth was variable, No distinction was therefore,
made between Universal Time, defined by the rotation of the
earth, and Ephemeris Time (see Appendix E) which is uniform
and is defined by the gravitational dynamics of the solar
system, independently of the earth’s rotation. If, therefore, we
are to retain the concept of the mean sun, we must define it in
two separate ways for Universal and Ephemeris Time.

We shall begin by ignoring precession and nutation, thus
assuming for the present that the equinox 7 and the equator
Fr@ are fixed (Fig. 56). Let 4 be the direction of the sun as seen
from the earth when the sun is nearest the earth. Since the sun
appears to describe an ellipse relative to the earth in the course
of a year, 4 is the direction of perigee. Let n denote the mecan
angular velocity of the sun in its apparent orbit around the earth.
When the sun’s position on the celestial sphere is at 4, suppose
a fictitious body to start from A and to move along the ecliptic
with the mean angular velocity n. VWhen the sun reaches the
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point § on the ecliptic we shall suppose the fictitious body to be
at M,. If t and 7 are the times corresponding to the position of
the sun at S and at 4 respec-
tively, the arc A, is the mean K
anomaly M which is given by
M=n@t—r1) ..Q2).
When the fictitious body is
at T (at timer,) suppose a second
body, which we call the fict:-
tious mean sun,to start from 7
and to move along the equator
with the sun’s mean angular
velocity n. When the first ficti-
tious body is at M,, the second
isat M, so that TM, =TM. But
TM, is the sun’s mean longitude Fig. 56.
land TM is the right ascension of the fictitious mean sun; hence

RAFMS. =l=n(t-7) ... (3).

It is evident that according to this equation the r.A.F.mM.s.
increases at a uniform rate.

When the movements of the equator and equinox due to
precession are taken into account, the fictitious mean sun is
defined to travel along the mean equator in such a way that its
mean right ascension is always equal to the sun’s mean longi-
tude. This right ascension is, therefore, independent of the
earth’s rotation, and the fictitious mean sun is a suitable refer-
ence point for the definition of Ephemeris Time. The hour angle
of the fictitious mean sun will, however, be affected by irregu-
larities in the earth’s rotation, since it depends on the instan-
taneous sidereal direction of the observer’s meridian. So an
alternative meridian is defined, called the Ephemeris Meridian,
which corresponds with the sidereal direction that the Green-
wich meridian would have if the earth were rotating strictly
uniformly. The hour angle measured from the ephemeris
meridian, instead of the observer’s meridian, is called the
Ephemeris Hour Angle (E.H.A.). Ephemeris Time is defined in
terms of the Ephemeris Hour Angle of the fictitious mean sun
by

E.T. =12+ EHAFPM.S. ... (4).
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A slightly different reference point, which is simply called
the mean sun, is required to define Universal Time. The mean
sun also moves round the mean equator but at a rate that is
directly proportional at each instant to the earth’s angular
velocity. At a certain epoch in the past the mean sun is defined
to be coincident with the fictitious mean sun, and the ephemeris
meridian is defined to be coincident with the Greenwich meridian.
At some later time, if the earth’s angular velocity is decreasing,
the ephemeris meridian will be displaced slightly east of the
Greenwich meridian, and the right ascension of the mean sun will
be less than that of the fictitious mean sun by a proportional, but
much smaller, amount. A precise formal definition of the mean
sun is given in Appendix E, and Universal Time is defined in
terms of the Greenwich H.A.M.S., as in section 28, by the
equation

U.T. =120 + Greenwich H.A.M.S. ... (5).
The difference between ephemeris and universal time, about 45¢
in 1975, is denoted by AT, that is

AT =g1.—UT. L. (6).

The value of AT cannot, however, be calculated in advance
since the earth’s rotational rate is not wholly predictable.

86. The sidereal year and the tropical year.

The time required by the sun to make a complete circuit of
the ecliptic is called a sidereal year. Thus, it is the interval
between its passage through any fixed point on the ecliptic and
its next passage through the same point.

The tropical year is the average interval between two consecu-
tive passages of the sun through the vernal equinox (which must
now be regarded as in motion owing to precession). In Fig. 55,
p- 136, we shall now suppose that 7" is the mean equinox when
the sun’s R.A. and declination are both zero—the sun is then in
the direction of 7. As the sun moves along the ecliptic in the
direction TR, the mean equinox moves slowly in the opposite
direction. Let 7"; denote the position of the mean equinox when
it and the sun are again coincident. Then the tropical year is the
time taken by the sun to describe 360° less 7, 7. From observa-
tions it is found that

The tropical year = 365-2422 ephemeris days.
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The relation between the tropical and sidereal years is evidently
given by

Sid. year : trop. year = 360°: (360° — 50"-3) ...(7)
(the precessional motion of the equinox, i.e. 7T, is 50”-3 per
tropical year). It is then found that

The sidereal year = 365-2564 ephemeris days.

For strict accuracy we use ephemeris days; but, to the precision
to which the two years are given above, we may equally well
regard them as given in mean solar days of universal time.

87. Relation between universal and mean sidereal fime.

We have defined a tropical year as the average interval
between two successive passages of the sun through the moving
mean equinox. Ignoring the difference between v.r. and E.T.,
this interval is the same as that between two successive pas-
sages of the mean sun through the mean equinox. So in the course
of atropical year the R.A.M.S. increases from 0° to 360°, that is the
increase in the r.a.M.S. is at the rate of 360° = 365-2422 or
59’ 8:33 per mean solar day. Let ¢, be the mean sidereal time
when the hour angle of the mean sun at a given place is H, and
let R, denote the corresponding value of the r.a.m.s. Then

w=H,+R ... (8).
Let t, be the mean sidereal time one mean solar day later. The
hour angle of the mean sun has increased by 360° and the
R.A.M.S. by 59’ 87-33, or in time measure by 242 and 3m 568556
respectively. Hence
ty= (Hy + 240) + (R, + 3™ 56%-556)  ...... ),
so that, by (8), 4 _ s — 24v 3m 565556
But ¢, — ¢, is the interval of sidereal time corresponding to 24? of
universal time. Hence
24h U, T, = 24h 3m 568-556 mean sidereal time ...(10).
It is easily calculated from (10) that
24k mean sidereal time = (24b — 3m 558-910) v.t. ...(11).
The relation (10) may also be derived from the following con-

sideration. At a particular instant the mean sun and the mean
equinox are coincident and after a tropical year they are together
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again. In this interval, the earth has rotated about its axis
365-2422 times with respect to the mean sun and once more with
respect to the mean equinox. Hence

365-2422 mean solar days = 366-2422 mean sid. days
from whieh .. (12),

1
24b U.T. = <l +

b ) o . )
365-2422) mean sidereal time

This last relation is evidently the same as (10).

To facilitate the conversion of any interval of u.T. into its
equivalent, expressed in mean sidereal time, and vice versa, the
following tables are given; the entries are easily derived from
(10) and (11).

Table I. Conversion of mean solar to mean sidereal time
241 mean solar time = (24 + 3™ 565-556) mean sid. time

I, o, =(1h4  9%8565) ”
1=, ., =(1Im+  0%1643) ”
1 w o om =(18 4+ 050027 ”

Table II. Conversion of mean sidereal to mean solar time
241 mean sid. time= (24® — 3m 555-910) mean solar time

10 =(1» —  9%82068) , ,,
Im =(1m—  0-1638) , ,
1¢ =(1* —  0%0027) ,

In the almanacs there are more extensive tables which
facilitate the problem of time-conversion.

Example 1. To find the Greenwich mean sidereal time on
1931 February 24 at 8h 47m 38s-52 U.T.

From the almanacs, the Greenwich sidereal time on February
24 at 0" u.r. (midnight) is 10h 11m 37s.67. The mean solar
interval concerned is 8h 47m 385-52 and by means of Table I
this can be expressed in mean sidereal time (taking the hours,
minutes, seconds separately) as follows:

Mean solar time Mean sidereal time
8h = 8h + 8 x 958565 or 8% 4 Im ]18s-85
47m = 47m 4 47 x 05-1643 or 47m 7872
38s = 388 + 38 x 050027 or 38 + 0s-10
0s-52 = 0s-52 + 0500

The sum of the quantities on the right is
8b 47m 388-52 4 1m 2(8-67 or 8h 49m 5s.19,
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Hence the interval of 8h 47m 385-52 mean solar time is equivalent
to 8h 49m 55-19 mean sidereal time.

But at 0b u.T. the mean sidereal time is 10® 11m™ 378-67.
Hence at 8h 47m 38s.52 vu.T. the mean sidereal time is 192 Om
425-86.

Example 2. To find the u.T. on 1931 April 5 when the Green-
wich mean sidereal time is 18h 31m 52s.38,

From the almanac, the mean sid. time at 0* U.T. on April 5 is
12h 49m 19s-83, which subtracted from 18h 31m 525-38 gives the
sidereal interval concerned. This interval is thus 5 42m 32s-55
mean sidereal time, We use Table II as follows:

Mean sidereal time Mean solar time
5h = Bh — 5 x 958206 = 5b — 49s-15
42m = 42m — 42 x 051638 = 42m — 6588
32s = 328 — 32 x 0%0027 = 328 — 009
0s-55 = 055 — 0500

The sum of the quantities on the right is
5h 42m 32s8.55 — 568-12 or 5h 41m 368-43,
Hence when the Greenwich mean sidereal time is as stated in the
problem, the U.T. is 57 41™ 36%-43.
The computations can be considerably curtailed by means of
the special tables in the almanacs already mentioned.

88. The calendar.

We have already mentioned that the tropical year is the unit
on which civil reckoning is based. For obvious reasons, the civil
year contains an integral number of mean solar days and, as we
have seen, the tropical year is equal to 365-2422 mean solar days.

In the Julian calendar, introduced by Julius Caesar, the
tropical year was taken to be 365} days; three years out of
every four were each given 365 days while the fourth—called
a leap-year—was given 366 days. The leap-year was chosen to
be that one which was divisible by 4 and the extra day was added
to February. Thus, according to the Julian rule, the years 1928,
1932, 1936, etc., are all leap-years in each February of which
there are 29 days. If the assumed length of the tropical year had
been accurate, then there would have been an exact accordance
between cycles of four tropical years and cycles of four civil
years.
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In 1582, Pope Gregory introduced the calendar now in use;
it was not, however, till 1752 that it was adopted in England.
Now this Gregorian calendar is designed to introduce the
necessary correction, based on the accurate value of the tropical
year, to the Julian system. According to the Julian system, the
years 1700, 1800, 1900 and 2000 would all be leap-years; in the
Gregorian calendar only 2000 is defined to be a leap-year, the
rule being that, when a year ends in two “noughts”, it is not a
leap-year unless it is divisible by 400. In a cycle of 400 years,
there are 100 leap-years according to the Julian calendar and
3 less, or 97, in the Gregorian calendar. Hence, according to the
Gregorian calendar,

400 civil years = {400 x 365 + 97) mean solar days,

from which the average civil year is 365-2425 mean solar days.
This is so near the value of the tropical year that no appreciable
discrepancy can arise for many centuries.

There is one small matter relating to the civil year that we can
conveniently consider here. The first day in the year is, according
tocivil usage,denoted January 1 and anevent that happens, say, at

6 a.m. at Greenwich on January 1 is said to occur on January 1,
60 0m u.r. or on Jan. 19:25. The event thus occurs 1-:25 days
after an epoch, which is denoted astronomically by Jan. 04-0
which, in effect, is the midnight that ushers in the day De-
cember 31. Thus the instant given by 1931 December 31,
181 0™ v.T. can be written as 1932 Jan. 0%4-75. A similar pro-
cedure is applicable to the other months.

89. The Besselian year.

We have defined the length of the tropical year but not the
instant, according to civil reckoning, at which it is assumed to
begin. It is the general astronomical practice to define the be-
ginning of the tropical year (or solar year, as it is sometimes
called) as the instant when the r.a. of the fictitious mean sun
—or the sun’s mean longitude—is exactly 182 40m or 280°. This
instant falls near the beginning of the civil year. The year
defined in this way is usually called the Besselian year, after the
German astronomer Bessel who first introduced it into astro-
nomical practice. Thus the beginning of the Besselian year in
1975 is 1975 January 0%978 Ephemeris Time, that is 1974
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December 31, 232 28m E.1. To the accuracy quoted here the
difference between ephemeris and universal time is almost
negligible, since in 1975 AT = 45%6, which is less than one
thousandth of a day. The beginning of the next Besselian year is
clearly obtained by adding 365-2422 days. Hence in 1976, the
beginning of the Besselian year is 1976 Jan. 19-221 E.T., the
slight apparent discrepancy is due to rounding.

1t 13 the general practice to denote the beginning of any Besselian
year by the notation 1975-0, 1976-0, 1977-0, etc.

The year defined in this way is used in calculations and ob-
servations relating to the heavenly bodies. For example, if the
R.A. and declination of a star are observed at a particular instant,
the co-ordinates refer to the actual or true equinox and equator
at that instant. By means of certain principles which we shall
elaborate in Chapter X, the star’s position can be deduced with
respect to the mean equinox and equator at the beginning of the
Besselian year. Thus for example, the positions of stars observed
at different dates during 1975 can all be referred to the mean
equinox and equator for 1975-0and by a further process to some
standard equinox such as that for 1300-0 or 1950-0.

90. The Julian Date.

In certain observations (such as observations of variable stars)
it is found convenient to express the instant of observation as
so many days and fraction of a day after a definite fundamental
epoch. The epoch chosen is Greenwich mean noon of January 1,
4713 B.C., and for any given date the number of days which have
elapsed since this epoch defines the Julian Date (3.D.) of the date
in question. For example, for 1975 January 1, 122 u.T., the
Julian Date is denoted by 3.D. 2442414, the time of an observa-
tion made say on 1975 Jan. 3, 181 v.1. (i.e. 6 hours after Green-
wich mean noon on Jan. 3) is denoted by J.D. 2442416-25. It is
essential to note that the Julian Day begins at Greenwich mean
noon. In the almanacs the Julian Date is given for every day in
the year, and there are also tables which enable the astronomer
to find the Julian Date for any day in any year.

91. The equation of time.

As in Chapter 11 (p. 43) the equation of time () is defined by
E=mHA 0 —HAMS. ceeen.(14),
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in which H.A. ® denotes the hour angle of the sun and 1.A.M.s. the
hourangle of themeansunatagiven time and place. We have also
Sid. time = H.A. ® + R.A. ® = H.AM.S. + R.AMS. ...... (15),
and E=RAMS. —RA.® .. (16).
The rR.a.M.8. is known in advance for any universal time, while
R.A. @ is similarly known for any emphemeris time, but the
exact relationship between the two times cannot be predicted.
Hence the equation of time cannot be computed in advance and
8o it is no longer given in the Astronomical Zphemerts, though it
is still used in the Nautical Almanac. If, however, we replace the
mean sun with the fictitious mean sun and write instead
E'=rAFMS.—-RA.®@ ... (17)
then E’, which may be called the equation of ephemeris time, dif-
fers from E by only 0-0027A7T and can be computed in advance.

In Fig. 57 the celestial sphere is drawn with the earth as
centre. Relative to the earth,
the sun will appear to describe
an elliptic orbit lying in the
plane of the ecliptic. The prin-
ciples and formulae of Chapter v
apply to the sun’s apparent
orbit around the earth.

Let ® denote the longitude of
the sun at a given instant, let o
be the sun’s right ascension and
let I be the sun’s mean longi-
tude. Then, by (3),

E=(0-a—-(0-1
...... (18). Fig. 57.

In Fig. 57 let 4 denote perigee. Then the arc AS is the sun’s
true anomaly v. Let M, be the position of a fictitious body
coinciding with the true sun at perigee and moving in the ecliptic
with the sun’s mean angular motion »; then the arc 431, is the
mean anomaly M and the arc TM, is I. Thus,

®©—1=7T8-7TM,
= A8 - AM,,
that is e—Il=v-M .. (19).
Hence E=—(a-0)-(v-M) ... (20).

K
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The quantity £’ will thus consist of two parts: (1) the quantity
(e — @) called the reduction to the equator, and (2) the quantity
(v — M) which is the equation of the centre discussed in section 73,

We first express the quantity (® — a) in the form of a series.
From the right-angled triangle ’SD (PSD is the meridian
through §) in which

TS = ®, TD=a, 87D =¢ and SDT = 90°,
we have by the four-parts formula D
COS @ COS € = sin a cot ®,

or tan ¢ = cos ¢ tan ®,
which can be written

m

1 tan?
tang = ———tan® ... (21).
1+ tan?:

(3]

o

Since € is about 23}°, tan? —; is approximately 1/25. Write y for

tan? - ; then

€
2 tan a = i—;g tane ... (22),
in which we regard y as a small quantity.

(22) is essentially of the same form asformula (82) of Chapterv,

p- 118, which is given in the form of a series by (83), p. 119.

Hence writing y for — xin (83) and « for g and @ for 1%7 , we have

® —a=ysin20 — {y?sin4e + {y®sin 6o ...... (23).
In this formula, @ and ¢ are expressed in circular measure.
Expressing the difference (® — «) in seconds of time we obtain
® —a=cosec 18[ysin 2® — $y?sind @ ...].

Now cosec 18 = 206265/15 and y (z tan? 52> = (0-0430468, using

the value 23° 26’ 33" for the obliquity e in 1975. We then
obtain
® —a=1591%948in2® ~128-74s8in 4 ® + 05-37sin 6 ®

Formula (24) gives the part of the equation of ephemeris time,
depending on the obliquity of the ecliptic, expressed as a series
involving the sun’s true longitude ®.
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The other part of the equation of ephemeris time depends
on the eccentricity and is the equation of the centre. Quoting
formula (87) of Chapter v we write, keeping only terms up to e?,

v—M=0—1=2esin M + je?sin2M ...... (25).
Expressing (v — M) in seconds of time and using the value of
e for 1975-0, namely 0-016720, we find

v— M = 459583 sin M + 48-81sin 2M ...... (26).

Now the right-hand side of (23) is expressed in terms of ®,

the sun’s longitude, which by (25) is expressed in terms of the
mean anomaly M by

® =1+ 2esin M + 4e?sin 24 ...... (27).
We substitute the value of ® given by (27) on the right-hand
side of (23). As we have pointed out, y is about 1/25 and e is
about 1/60; regarding y and e as small quantities of the same
order of smallness and keeping only terms up to the second order
in the value of ® — a, we can write with the accuracy indicated
sin 2 ® = sin (2] + 4e sin M)
= sin 2] + 4esin M cos 21
(we require the development of sin 2@ up to the first order only,
since in (23) sin 2 ® is multiplied by y). Similarly we have, with
the limitations imposed,
sin 4 ® = sin 4/,
Hence (23) becomes—up to the second order—
® — a = ysin 2l + dey sin M cos 2] — Ly? sin 4] ...(28).
Combining (28) with (25) we have
E' = ysin2] — 2esin M + 4eysin M cos 2]
— $y?sin 4l — 2e?sin 2M ...(29).
Inserting the numerical values of y and e, we obtain
E' = 5918-9sin 2] — 4595-8sin M + 398-65sin M cos 2!
— 128-7gin 4] — 48-8sin 2/ ...(30).
Now in Tig. 57, the mean anomaly M is the arc 4.}, which is
equal to AT + T2, so that
' M=AT+ 1
. Also, if w denotes thelongitude of perigee, we have w==360° — A7,
- Hence M = 360° + (I — m) veennn(31).
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In the formula (30) we can thus write (! — w) for M on the right-
hand side. For 1975-0 the value of w is 282°-5099, After some
reduction, we then obtain
E’ = —103s-9ginl — 4298-6cosl + 5968-3sin 2] — 28-0cos 2]
+ 48-3gin 3] +19%-3cos 3l —128-7Tcosdl  ...(32).

Up to the order of approximation adopted, this formula gives
the equation of time in terms of the sun’s mean longitude.

The quantity tabulated in the Astronomical Ephemeris is not
E’ but the sun’s ephemeris transit. This is the ephemeris time
at the instant of the sun’s transit across the ephemeris meridian,
and this time is easily seen to be 12! minus the equation of
ephemeris time at this instant.

92. The seasons.

Consider the apparent path of the sun during the year (Fig. 58).
The earth E is the centre of the celestial sphere and relative to &
the sun appears to describe the great circle CT 4B on the sphere
—the ecliptic—which in- P
tersects the celestial equa- K
tor inthe two points 7’and
B, the vernal and autum-
nal equinoxes (sometimes
called the First Point of
Aries and the First Point
of Libra respectively). P
is the north pole of the
equator. The sun’s decli-
nation increases from 0°
at T (about March 21) to
a maximum of 23° 27" at
A (about June 21). The Fig. 58.
point A is called the summer solstice. Similarly, the point C
where the sun (about December 21) has its greatest southerly
declination (— 23° 27) is called the winter solstice.

Astronomically, the four parts of the year, or seasons, during
which the sun is successively in the quadrants 74, 4B, BC and
C?T are called, spring, summer, autumn and winter respectively.
As these terms are used rather loosely in ordinary speech, we
shall consider them only in their astronomical significance.

[June21]
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The general characteristics of the seasons at any place depend
on the relative amounts of heat received from the sun from day
to day. The two astronomical factors are (a) the interval during
which the sun is above the horizon on any day, and (b) the
general sequence of altitudes which the sun attains during this
interval. It is convenient to use the sun’s altitude or zenith
distance at apparent noon as a criterion of (b).

Refraction being neglected, the number of hours during which
the sun (strictly, the sun’s centre) is above the horizon is given
by 2H, where H is the angle between 0! and 12t given by

cos H=—tan¢tand ... (33),

where ¢ is the latitude of the place; this is formula (24), p. 47.

If the declination 8 is positive, then in northern latitudes H
lies between 6b and 12t and therefore the sun is above the
horizon for more than 12 hours out of the 24. This occurs
between March 21 (approximately), when the sun is at 7, and
September 21 (approximately), when the sun is at B. Thus as far
as (a) is concerned, the days increase in warmth from March 21
to June 21 corresponding to the increase in 3 from 0° to+ 23°27’;
from the latter date, a decrease ensues. If 8 is negative, then in
northern latitudes the hour angle of setting is by (33) less than
64, and consequently the sun is above the horizon for less than
12b; this refers to the two seasons autumn and winter. The
minimum number of hours of daylight occurs when the sun
attains its greatest southerly declination, that is at the winter
solstice (December 21). It is easily seen that the number of
hours of daylight increases from December 21 to June 21 and
decreases from June 21 to December 21.

The sun’s zenith distance z at apparent noon on any day is

given by z2=¢—3 ceeee.(34).

It is clear that at any place whose north latitude lies between
0° and 23° 27’, the sun is in the zenith (or practically so) twice
during spring and summer, that is, between March 21 and
September 21. For latitude 23° 27° N, the sun is in the zenith
only on June 21. This northern parallel of latitude (23° 27" N)
is called the T'ropic of Cancer. The corresponding south parallel
(23° 27" S) is the T'ropic of Capricorn, and for places between this
parallel and the equator, the sun is in the zenith twice during
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the interval between September 21 and March 21. The zone of
the earth’s surface bounded by the Tropics of Cancer and
Capricorn is the Torrid Zone. The parallels of latitude 66° 33’ N
and 66° 33’ S are called the Arctic Circle and Antarctic Circle
respectively. The zone between the parallels of 23° 27' N and
66° 33’ N is called the North Temperate Zone, and the corre-
sponding zone in the southern hemisphere is the South Temperate
Zone.

From (33), it is seen that when ¢ = 66° 33’ N and & = + 23° 27,
the hour angle of setting is 12b; that is to say, at the Arctic Circle
on June 21 the sun is above the horizon during the whole
24 hours. In latitude 70°, for example, the sun is above the
horizon continuously—by (33)—during the period for which
the sun’s declination is between + 20° and + 23° 27, that is to
say (referring to the almanac for 1931), between May 22 and
July 24. At the north pole the sun is above the horizon con-
tinuously between March 21 and September 21 and below the
horizon for the remainder of the year,

Summarising for the northern hemisphere, we have these
characteristics of the seasons. During spring, the number of
hours of daylight increases from 12 hours at March 21 until
June 21 when the maximum is reached; this maximum can be
24 hours on particular days for places on or north of the Arctic
Circle; during spring, the sun’s altitude at noon increases, for
places north of the Tropic of Cancer, and reaches a maximum
on June 21; for places between the equator and the parallel of
23° 27° N, it reaches a maximum of 90° on some date between
March 21 and June 21.

During summer, the number of hours of daylight decreases
from the maximum on June 21 to 12 hours on September 21.

During autumn, the number of hours of daylight decreases
from 12 hours on September 21 to a minimum on December 21,
and during this period the sun’s altitude at noon progressively
decreases.

During winter, the number of hours of daylight increases from
the minimum on December 21 to 12 hours on March 21, and
during this season the sun’s altitude at noon progressively
increases.

The relation between the seasons and the sun’s declination in
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the southern hemisphere can readily be inferred from the
preceding discussion.

The respective lengths (in mean solar days) of the seasons can
be obtained by considering the equation of the centre which, for
our present purpose, we write simply in the form—{from (25)—

l=® — 2esin M
or, using (31), l=® — 2esin (I - m) weer(35).
As [ is approximately equal to ®, we can replace ! on the right
of (35) by ® and then

l=®—2sin(e—wn) ... (36).

Letl,,1,,1;and [,denote the values of the sun’s mean longitude
at the beginning of spring, summer, autumn and winter re-
spectively. At the beginning of spring ® = 0, therefore

,=2esinwo ... (37).

At the beginning of summer, ® = 90° or 727 in radian measure;
hence L=3—2cosm . (38).
Similarly ly=m—2esine ... (39),
lLi= 3277 +2cos®m 0 ... (40).

Let t,, t,, t, and ¢, denote the instants when the mean longitude
of the sun has the values [, ,, I; and [,. Then

b—L=nl,—t) e (41),

where 7 is the mean angular motion. If ¢, — ¢; is expressed in
mean solar days, n = 2n/T, where T'= 365-2422 mean solar days.
Hence by (41)

T

27
But (t, — ¢,) is the number of mean solar daysin spring, and if we
denote this interval by I, we have from (37), (38) and (42),

T {m \\

by— 1t = I, — 1) meansolardays ...... (42).

1, = P 2e (sin w + cos @) ',

~—

or I,= 91-31—8;?(sinw+cosm) ...... (43).
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Similarly if I,, I, and I, denote the number of mean solar days
in summer, autumn and winter respectively, we obtain

12=91-31—§zj (sinw — cos @) ... (44),
eT | . -

13=91-31+»~7; (sinw + cos @) ...l (45),

I,=91-31+ g(sinm—cosm) ...... (46).

Putting 7' = 365-2422, e = 0-01672, w = 282°510, we find that,
for the northern hemisphere,

Spring contains 92 days 19 hours
Summer » 93 ,, 16 ,,
Autumn " 89 ,, 20
Winter " 89 ,, 0

93. Time of the sun’s transit over any meridian.

We shall conclude this chapter by considering two problems
involving time. Anexample of the first problem is the following:
to calculate, to the nearest second, the u.T. and standard time of
the transit of the sun’s centre on 1975 January 4, at the
Dominion Observatory, Victoria, B.C. where the longitude is
8h 13m 40s-2 W.

From the 1975 almanac, we have the following:

On Jan. 4, E.T. of the sun’s emphemeris transit is 12 04m 458-5.
On Jan. 5, . . . " 12h Q5m 12s.6,
These two times are not exactly the times for which the Green-
wich hour angle of the sun is zero, since they are times of transit
over the ephemeris, not the Greenwich, meridian. It can be
shown (see exercise 23 at the end of this chapter) that the
ephemeris meridian is displaced east of the Greenwich meridian
by an amount 1-0027 AT, and so it follows that

EHA © = GHA. © +1-0027AT ... (47).
If now we neglect any change in the equation of time during the
short interval between the two transits, we readily deduce
U.T. (Greenwich transit) = E.T. (eph. transit) + 0-0027 AT'.
The small correction 0-0027 AT, which for 1975-0 is 08-12, is
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normally neglected, and the entries in the almanac are then
treated as if they were simply the universal times of transit at
Greenwich. When the sun’s centre is on the meridian of
Victoria, the sun’s Greenwich hour angle is 8t 13m 40s.2 or
approximately 81-23. From the two times quoted above we see
that it requires 27s-1 more than 24 hours for the sun’s hour
angle to increase from 0b to 242, The additional time relevant
to Victoria is (8:23/24) x 2751 or 953, and so we find the v.T.
of solar transit at Victoria is 7', where

T =121 04m £58-5 + 8h 13m 405-2 4 9s-3,
Thus the v.T. of transit at Victoria is 202 18m 35s,

The standard time kept at Victoria is “Pacific time” corre-
sponding to the meridian of 8% west. Hence the standard time
of the sun’s transit at Victoria on January 4 is 122 18m 35¢ (Pacific
time).

94. Time of the moon’s transit over any meridian.

This is the second problem and, as an example, we shall find
the U.T. and standard time of the moon’s transit at Victoria
on the night of May 24/25 1975.

From the Astronomical Ephemeris information is obtained
about both the upper and the lower ephemeris transit of the
moon. As in the previous section we may regard these entries
as the universal times of transit over the Greenwich meridian.
Thus it is found that on May 24 the moon’s transit occurs at
23k.7174, and that its lower culmination occurs 122-4717 later.
During this interval the Greenwich hour angle of the moon will
increase from O to 12h. Clearly transit at Victoria will occur at
an interval of (12-4717/12) x 8h 13m 40s-2 after the transit at
Greenwich. This interval can be written as

< 14 0-4717

12

Hence when the moon transits at Victoria, the corresponding
U.T. is (2817174 + 88.5512) May 24, or May 25 8h-2686 U.T.

A more accurate result can now be obtained as follows.
Taking AT as 45%6 (or 0n0127), the E.T. of this transit at
Victoria is found to be May 25 82-2813. In the Astronomical
Ephemeris the moon’s apparent right ascension is tabulated at

>x8h-2278 or 8h.5512,
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aourly intervals of ephemeris time. For the computed time of
transit it is found to be 16h 11m 41s, Since the Greenwich hour
angle is then 81 13m 405, the apparent sidereal time at Green-
wich is
G.8.T. =160 11m 4]s 4 88 13m 408 or Oh 25m 21s,

This Greenwich sidereal time is readily converted to v.T. by
1sing the Universal and Sidereal Times table in the almanac.
We then find the Uv.T. of transit at Victoria to be 82 16™ 09s,
The standard time of transit is May 25 Ok 16™ 098 (Pacific time).

EXERCISES
[Symbols used:
¢ = latitude of observer, € = obliquity of the ecliptic.]
e = eccentricity of earth’s orbit,

1. For a place within the tropics, prove that the hour angle H of the sun
(a, 8) when the ecliptic is vertical is given by
H = gin™! (sin o cot § tan ¢) — a.
2. Astar (q, 8) rises at the same time as the sun at a place in north latitude ¢
when the sun’s right ascension is a,. Prove that
&; — sin~? (sin ¢, tan ¢ tan ¢) = a — sin~?! (tan & tan ¢).
8. Prove that at a place on the Arctic Circle the daily displacement of the

point of sunset is equal to the sun’s change in longitude during the same
interval. [M.T)

4. Neglecting the eccentricity of the earth’s orbit, prove that at a place
within the Arctic Circle the sun will be above the horizon for
365 cos™?! (c_og_) days.
4 81N €

B. If S is the sun’s semi-diameter in minutes of arc, show that at a solstice
the time taken by the sun’s disc to cross the prime vertical at a place in
latitude ¢ { > €) is, in minutes,

28
15 (sin® ¢ — sin? )}

8. Observations of equal altitude of { Persei are taken with a theodolite on
1931 January 3, at u.T. 18h 45m 85 and 220 44m [9s. Calculate the longitude
of the observer, [Lond. 1925.]

7. The longitude of Columbia University, New York, is 4% 55= 508 west of
Greenwich. The sidereal time at mean noon at Greenwich on a certain day is
17h 23m 88, Show that on the same day when the sidereal time at Columbia
University is 20b 8= 4 the hour angle of the mean sun at the same place is
28 43m 4],
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8. If § is the sun’s declination, § its semi-diameter in minutes of are, I the
interval in minutes between the disappearance of its lower and of its upper
limb at sunset for a place in latitude ¢, prove that ¢ is given approximately by

4 52
in2d = cos®d — —>_ .
8in% ¢ = cos? 8 595 I3 [Lond. 1930.]

9. Twostars,of equal r.a. and of declinations  and &', are observed when their
altitudes are the same; the sidereal interval % between the observations is noted.
Prove that H, the hour angle of the first star at the moment of observation, is
given by 2sinyg tané

cos (Y + H)= m.sin%(&— 8)cos}(8+9),

where coty = o8 & co cogl_h.— cos 8 .
cos &' sinh
10. The right ascension and declination of the sun near the summer solstice
are (90° — 2B) and 3 respectively. Prove that (¢ — ) expressed in seconds of
arc is given by
€ — 3 = cosec 1” [tan? B sin 2¢ — } tan® Bsin 4¢ + ...].

11. Let 7' and 7" be the times shown by a sidereal clock when a star is at the
same altitude, first on one side of the meridian and then on the other, and let a
be the right ascension of the star. Show that ¢« — } (7' + ") is the correction
to be applied to clock time to obtain true sidereal time.

12, If the sidereal clock times when the sun arrives at equal altitudes on
each side of the meridian are T and 7", and if the change of declination § of the
sun in the interval is 28, and the right ascension of the sun at culmination is a,
show that the correction to be applied to clock time to obtain the true sidereal

time is , tan 8 tan ¢
“—%<T+T)-1}<tan)‘;(T'—T)—Smi(T,—T)>d8.

13. From the side of a church running due east a tall buttress projects south-
wards forming a rectangular corner in which the afternoon sun casts a triangle
of shadow on the ground. Show that in winter the total amount of shade during
the day (ground-area integrated with respect to time) is proportional to

1 sin (— 8)
sing - cos¢sin (¢ —8)°
where 8 is the declination of the sun. [(M.T. 1925.]

14, If the sun’s right ascension increases by Aa while its longitude increases
by a small amount AL, show that

Aa = AL cos esec? s,
where ¢ is the obliquity of the ecliptic and § is the sun’s declination.

Hence find the approximate dates when that part of the equation of time

which is known as the reduction to the equator is a maximum.
[Lond. 1929.]
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15. Tf @ is the longitude of the sun and a its right ascension, show that the
greatest value of (a — @) occurs when

tan @ = (sec s)% and tan a = (cos e)%.

16. Prove that, if the eccentricity of the earth’s orbit were zero, the equation

of ephemeris time in minutes would be
720 (l—cose)tan @

1 + cos e tan® ®

where ¢ is the obliquity of the ecliptic and ® the sun’s longitude.
[M.T.1912]

tan

’

17. Show that the part of the equation of time due to the orbital eccentricity
is stationary in value when the sun’s true anomaly is

cog™! [(—1 - e:)i‘ - l:l ’

and that the part due to the obliquity is stationary in value when the sun’s
longitude is 3
tan? {(sec €)2}.
18. Show that when the equation of time is a maximum or minimum the
sun’s longitude @ is given by
{1— e’)*} {cos? ® + cos?esin® @) =cose{l+ecos(® — m)}?,
where w is the longitude of perigee.

19. Show that in latitude 45° the difference between the times from sunrise
to apparent noon and from apparent noon to sunset is

D

65}

where D is the length of the day, 8 the sun’s declination, and 7' the number of

days since the vernal equinox, the earth’s orbit being supposed circular.
[Ball.]

tan 8 sec 8 (sec 28)% cot (360° T/365}),

20. Assuming thesun’s semi-diameter at mean distance tobe 9617, show that
the time ¢, expressed in sidereal seconds, required for the semi-diameter to cross
the meridian is expressed by the relation

961 ( cos ¢
S =151 P
rcos 8 1 \1 r?(r+1)cos? S> b
where 7 is the length of the year in mean solar days and r the sun’s distance in
astronomical units. [Coll. Exam.]

21. Prove that, for a ship steaming V nautical miles per hour on a course
S 6° W, the intceval I between the passage of the sun over the meridian of the
ship and the momcut when the sun’s altitude is a maximum, is given by
_ Vsin sece
900 ) ’

I=15%3(V cosd+ Ad)(tan¢ — tan 8)/(
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where ¢ is the ship’s latitude at apparent noon and A$ is the northerly change
(in minutes of arc) of the sun’s declination per hour at apparent noon.
{Lond. 1926.]
22. Given that:

the tropical year = 365-2422 mean solar days

the sidereal year = 3652564 ' .

the anomalistic year = 365-2596 ' »
determine the amount and sign of annual precession and the motion of
peribelion.

23. Define the ephemeris meridian and show that consistent definitions may
be made of the ephemeris hour angle of a star, of the ephemeris longitude of a
place and of the ephemeris sidereal time. Show that the tables in the Astro-
nomical Ephemeris relating mean solar and mean sidereal time may be used
without modification to relate ephemeris time and (mean) ephemeris sidereal
time,

Prove that for any celestial object X

E.H.A.X. = G.H.A.X. + 1-0027A7,

where AT is, as usual, defined as the difference between the ephemeris and the
universal time.

24. Prove that the right ascension of the fictitious mean sun exceeds that of
the mean sun by 0-0027A7.



CHAPTER VII

PLANETARY PHENOMENA AND
HELIOGRAPHIC CO-ORDINATES

95. The geocentric motion of a planet.

We shall assume for the present that the orbits of the earth and
a planet P are circular and in the plane of the ecliptic. In Fig. 59
let £ and P denote the positions of the earth and planet at any
given moment. The plane of the paper represents the plane of
the ecliptic. Let S?7 denote the direction of the vernal equinox
from the sun § and ET its direction from the earth E. The

P

JI—» m

S Q vy
Fig. 59.

angles EST and PST are accordingly the heliocentric longitudes
of the earth and planet (denoted by L and I respectively) and
PET is the geocentric longitude of the planet (denoted by A).
Let a and b be the radii of the orbits so that SE = a and SP = b;
also let the planet’s geocentric distance P be denoted by p. Our
object is to express the changes in the geocentric longitude A
in terms of the heliocentric longitudes I and I. Draw perpen-
diculars PM N, EQ to ST. Then we have at once

psinA=bsinl—asin L, ... (1),
and pcosA=bcosl—acos L, ... (2).
In these equations p, A, I and L vary with the time. Differen-
tiating, we obtain

d» . dp dl dL
pcos)\(—ﬁ+s1n)\a—z—bcosla—t—acosLa? ...... (3),
.y dA dp , . ,dl . dL
psm)«a—t—coshzt——bsmla—,t——asmL—(E ...... (4).
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Multiply (3) by p cos A and (4) by p sin A and add; we obtain

dA dl dL
2 &N a2 D Y Wadend
Pt 3 bp cos (I — A) Z; — 9p cos (L—A) TR (5).
Multiply (1) by sin! and (2) by cos ! and add. Then
pcos(l —A)=b—acos (L -1 ... (6).
Multiply (1) by sin L and (2) by cos L and add. Then
peos(L—A) =becos(L—-0l)—-a ... (7).
Using (6) and (7) we obtain from (5),
dA dl dL
2 2 _ — - 2 __ — —
P’ {b*—abcos (L - D)} a7t {a? — abcos (L — 1)} 1
...... (8).
Now, since the planet’s orbit is supposed to be circular, Z—i is

the mean angular motion n which is related to the radius b by
n2bd = G (M + m),
where M, m are the masses of the sun and planet and G is the

constant of gravitation. We can neglect m in comparison with
B in this problem and writing G. M = p, we obtain

=By L (9).

t
Similarly, % =ulat (10).

Insert these values of :Z and L(% in (8) and there results,
p? %\ = u{(b} + a}) — (ab~} + bat) cos (L — 1)}
Also, from the triangle PES, we obtain
pt=a2+b%—2abcos (L —1) ... (12).
Thus the value of (LZ\ given by (11} can be expressed completely

in terms of L and I.
The formula (11) can be written as
dA (% + at)atbl

P?Ei = /,1,‘} ((lb‘é + ba‘i) (

[ oirat —cos (L —1)
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Now (bt + ab) atblis less than (03 + ad) if a?b} < b+ a — abl},
that is, if (a¥ — 82)2> 0, which is evidently always true. Hence
it is possible to define an angle a between 0° and 90° such that
(b + at) atbt

bt + ot
The angle a can be calculated from the known values of a and b.
Hence, from (13),

cosa=

p2£=A[cosa—cos (L-01 ... (15),
where 4 is evidently a positive quantity. It is clear from (15)
that 3—? can be positive or negative or zero according to the values
taken by (L — ).

When dA is positive, that is when the geocentric longitude of

dt

the planet is increasing, the geocentric motion is said to be

direct; when dA is negative, that is when the geocentric longitude

dt

is decreasing, the geocentric motion is said to be retrograde ; when
Z—;} = 0, the planet is said to be stationary.
For a stationary point, (15) gives cos (L — 1) = cos &, whence
L — 1= qaor360° — a. Hence when (L — 1) is within the range
defined by (360° — a) - 0° -, cos (L —1)> cosa and the
geocentric motion is accordingly retrograde. When (L — 1) is
outside the range indicated, the geocentric motion is direct.

The interval of time during which the planet’s geocentric
longitude A increases from 0° to 360° is the synodic period
(p. 131) which we denote by S days. Hence during each synodic

period the geocentric motion is retrograde for ng days and

. 180 — «
direct for BT

For Jupiter, b = 5-20a and from (14) it is easily found that
a = 541°. Asthe synodic period of Jupiter is 399 days, it follows
that the motion of the planet is retrograde for 121 days and
direct for 278 days.

In TFig. 60, the geocentric motion of Jupiter against the back-

.8 days, « being expressed in degrees.
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ground of the stars is shown between 1931 January 15 and 1931
May 15. BetweenJanuary 15 and March 7 the motionisretrograde
and the right ascension of the planet is decreasing between these
dates. On March 7 the planet is stationary, after which the

+23°20 t— . - MARCH 7

. * * APRIL 1

+23°10"f : S
APRIL 15 &7 7/ .
/ /

Sresr .

Declinaticn
.
N

+23°0 +— . / .

y .

] LOAN-15 1 !

7h.10m. 7h.Cm. 6h.50m. 6h.40m.
Right Ascension

Fig. 60.

motion is direct and the right ascension is increasing. The
separation of the two parts of the path is due to the effect of the
inclination of the planet’s orbit to the ecliptic. The effect of the
inclination on the determination of the stationary points will be
discussed later in section 97,

93. The heliocentric distance of a planet, when stationary, in
terms of its elongation.
In Fig. 59, let P nowdenote the planet’s position at a stationary

point so that ESP = ¢, defined by (14). Let E denote the angle
SEP which is called the elongation of the planet from the sun, as
viewed from the earth. We shall suppose that the right ascension
and declination of the planet at the stationary point are ob-
served; the co-ordinates of the sun being taken from the
almanac, the calculation of E can then be easily effected.
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From the triangle ESP, we have
asin £ = bsin (£ + a),

bsina

from which tanf = ——— ... (16).
a—bcosa
We consider the case when b is greatcr than a.
From (14), since by definition 0 < a < 90°, we have
- 3
sing= 4 &= G+a)
b% + o}
Hence (16) becomes, after a little reduction,
b
tan £ = — ———
b+ att oo (17),

from which it is evident that in the case concerned the value of
E lies between 90° and 180°.

As a is the earth’s heliocentric distance and E is supposed
known, this last formula enables the value of b, the planet’s
heliocentric distance, to be calculated. We must remember, of
course, that the orbital eccentricities and the inclination to the
ecliptic of the planet’s orbital plane have been neglected in
deriving (17) and consequently, in the general case, this formula
can be expected to give only an approximate value of the planet’s
heliocentric distance. The minor planet Pallas was stationary
soon after its discovery and its approximate heliocentric distance
was first derived by means of the relation (17), the assumption
of a circular orbit being made.

When b is less than a, the procedure is similar.

97. The stationary points, the inclination being taken into account.

We consider in this section the circumstances in which a
planet is stationary in longitude when its orbital plane is
inclined at an angle ¢ to the plane of the ecliptic. We shall
assume that the orbits of the earth and the planet are circular
-and of radii @ and b respectively.

In Fig. 61, let NP define the plane of the planet’s orbit about
the sun S, the plane of the ecliptic being defined by NJ; the
angle PNJ = 4. Through K, the pole of the ecliptic, draw a great
circle KPJ. Let NP be denoted by ¢, NJ by ! and JP by 8.
The projection of the planet’s radius vector b on the plane of the
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ecliptic is b cos 8 which we shall denote by B. From the triangle
PJN (in which PJN = 90°), we have

singcoss=cos Bsinl ... (18),
cos¢y=cosfBcosl ... (19).

Consider now Tig. 62 in which 8@ is the projection of the
planet’s radius vector on the plane of the ecliptic. Let SN be
the direction of a node and let ¢ denote the angular distance of

K

Fig. 61. Fig. 62.

the earth E from the node. Let EQ be denoted by p and NEQ
by A (EN gives the geocentric direction of the node). We have
also NS’Q =l and 8Q = B. As in section 95 we have
psin A= Bsinl— asin ¢,
pcosd = Bcosl— acosd.
Now B = b cos 8; hence, using (18) and (19), we have
psinA = bcosisin:/:—-asinqS}
pcosA=bcosy —acosg
and differentiating,

d

pcos)\d/\ Psin A = bcoszcos¢vdt acos¢%z,

dp
dt " dt

PSin’\Z? (‘lhcosA bs1n¢u —asmgb d)
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Multiplying these equations, in order, by p cos A and p sin A,
adding and making use of (20), we obtain

ng—;—\= (bcosicos¢%—acos¢%> (bcosy — acos )
+ bsinl//@—-asinqsalé {bcosisinyg — asin ¢)
dt

=b%cost (filf + a? Cfiqts ab = ¢ [cos fcos ¢ cos ¢+ sin ¢ sin ¢

— ab %(-f [cos ycos ¢ + sin i sin ¢ cosi].

If the planet is stationary in longitude we must have Z%\ =0,

Also by Kepler’s law
d&/} = utb- -% and if = I,L%a_% .
We thus have for statlona,ry points
bt cosi + at = ab~? [cos  cos ¢ cos i + sin i sin $)
+ a¥b[cos i cos  + sin ¢ sin ¢ cos 7] ...(21).

) )
Writing cos ¢ = cos? 2 5~ sin? o

3> We finally obtain, after mul-

tiplying throughout by a?b?,
i
atbt (at + bt cosi) = (at + bF) cos (f — ) cos? 3

— (a — by cos (¢ + ¢) sin2% . (22).

This is the relation sought. It is to be remembered that ¢ and ¢
denote the angular distances of the planet and of the earth,
measured in the plane of their respective orbits, from the line
of nodes.

98. The phases of the planets and the moon.

We shall assume the heavenly bodies concerned to be spherical.
In Fig. 63, let P be the centre of a planet (or the moon) and let
the straight lines joining P to the earth and the sun cut the
planet’s surface at E and S. The hemisphere illuminated by the
sun will be bounded by the great circle BCK D, of which S is the
pole. The hemisphere towards the earth is bounded by the great
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circle ACLD of which E is the pole. Hence the only part of the
planet visible from the earth is the area consisting of the
spherical triangles A BC and ABD. The plane ACLD is the plane

of the planet’s disc as viewed from the earth. The great circle
arc CAD is the visible limit of the planet. Any point on CB such
as F will be seen on the disc at the point @, G being parallel to
the line of sight EP. The projection
of all points on the semicircle CBD
thus leads to a curve CHD in the
plane of the great circle ACLD, and
this curve is an ellipse of which CD
is the major axis; the semi-minor
axis is HP, where H is the projection
of B on the plane of the disc. The
planet is seen as shown in Fig. 64.
The visible area of the planet’s disc
is the area bounded by the semi-
circle CAD and the semi-circum-
ference CHD of the ellipse. If r de-
notes the linear radius of the planet (or moon) this visible area

4 is given by 4= }ar?— }ar . PH.
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Let d denote the angle SPE; then d is the elongation of the
sarth from the sun as seen from P. Now PH = PBcos APB,

and since SPB = 90°, it follows that the angle APB = 180° — d.
Hence N
wr
2
The phase is measured by the fraction of the diameter, per-
pendicular to the line of cusps, lying in the visible portion of the
disc; the phase is thus AH/2r or (1 + cos d)/2. From (23) it is
seen that the phase is also represented by the fraction of the
area of the disc illuminated.
We now consider in greater detail the phases of the moon. In
Fig. 65, let M denote the moon and E the earth. MS is the

direction of the sun from M ; SME S
is the angle d. The moon’s phase is

then given by (23). Now the moon’s

distance from the earth is very 7 Sun
small compared with the sun’s dis-
tance from the earth, and in Fig. 65
we may assume ES parallel to M8 Sw
without any serious loss of accuracy.

Hence,denoting SEM by E,we have
E =180°—d ord = 180° — E. This
angle E is the elongation of the
moon from the sun as viewed from
the earth.

At new moon E = 0, for the moon is then directly, or almost
directly, between the earth and the sun; thus d = 180° and the
phase is zero. At quadrature, the elongation is 90° and thus
1= 90°, so that the phase is }; the moon then presents one-half
of its illuminated surface towards the earth. When the moon is
in opposition, the elongation is 180°, so that d = 0; hence the
phase is unity, that is, the complete disc of the moon is visible;
the moon is then “full”. After full moon, the phases are re-
peated in reverse order until the next new moon occurs. When
more than one-half of the disc is visible, the moon is said to be
ribbous.

(I1+cosd) ... (23).

L (Earth)

Fig. 65.
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99. The brightness of the planets.

The amount of light which reaches the earth from a planet
depends (i) on the phase, and (ii) on the geocentric distance p of
the planet, varying inversely as p? Thus if B denotes the
apparent brightness, we can write

¢ (14 cosd)

B= S e (24),
where ¢ is a constant depending on the surface illumination and
reflective power. But from Fig. 66 S

_pitbi—a 95
cosd = 5p (25), b
where a and b are the heliocentrie distances of
the earth and planet. Hence P
B =c[p%+ 2pb + b% — a?]/2bp? a
...... (26). P
When B is a maximum, the orbits being
assumed circular, we must have dB =0
a5 | g
or p+ 4bp + 3 (b2 — a?) = 0, Fig. 66.
from which p=(b2+3at -2 ... (27).

For the planet Venus, we have b = 0-723a and for maximum
brightness (27) gives p = 0-430. From (25), the corresponding
value of d is 117°-9. The elongation from the sun—the angle
SEP—is then found to be 39°-7.

It should be remarked that in the case of the planet Mercury,
for which the orbital eccentricity is large (about 0-2), the
symbol b in (26) represents the radius vector in the orbit. The
brightness of Mercury is thus dependent on the planet’s position
in its orbit as well as on its geocentric distance.

100. Heliographic co-ordinates.

In studying sun-spots and the solar phenomena associated
with them, it is of importance to know their co-ordinates on the
solar surface; these co-ordinates are defined in much the same
way as that in which points on the surface of the earth are
expressed in terms of longitude and latitude. In Fig. 67, let the
sphere represent the solar globe. The great circle PEN, of which
K is the pole, is the intersection of the plane of the ecliptic with
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the sphere. The straight line from the sun’s centre C, drawn in
the direction of the vernal equinox, cuts the sphere in 7. Since
the earth is in the ecliptic, the straight line joining C to the
earth cuts the solar surface in E. Any plane perpendicular to
EC (which is the line of sight) we can regard as the plane of the
sun’s disc; for convenience we shall take the shaded plane
defined by the radii CK and CT to be the plane of the disc (& is
the pole of the great circle UKT). Any point X on the solar
surface will be seen on the disc at X, such that XX, is perpen-
dicular to the plane of the disc and therefore parallel to EC. The

K

/° v

o AL i
c[zpac B g
/ 'IbEa'rtg e
T P
SolarE wol? M
Oc-- -
Fig. 67.

position of X, can be ascertained, from visual or photographic
observations, with reference to certain rectangular axes in the
plane of the disc. The problem is to deduce the solar or helio-
graphic longitude and latitude of X from the observed position
X;.

The sun rotates about an axis, the northern extremity of
which is the point P in Fig. 67, and the plane perpendicular to
this axis cuts the sun’s surface in the great circle ONJ, which is
called the solar equator. The inclination JNT of the solar equator
to the ecliptic is usually denoted by I. The point N is the
ascending node of the solar equator on the ecliptic and its longi-
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tude 7.V (measured along the ecliptic from 7) is denoted by Q.
The value of Q is found to be given by

Q = 73° 40’ + 50”25 (t — 1850-0),

where t is expressed in years, so that for 19750 the value of Q is
75° 24'.7,

The heliographic co-ordinates of a point X on the sun’s surface
are defined with reference to the solar equator. As the sun isa
gaseous body, there is no definitely recognisable point on the
solar equator from which to measure longitudes. A reference
point O is chosen thus. At Greenwich mean noon on 1854 Jan. 1,
the node N defined a particular point on the solar surface.
Owing to the solar rotation this point is carried round the equa-
tor and at any subsequent time we suppose that it is at O;
assuming that the equatorial rotation occurs in a period of
25-38 days, the position of O with reference to N can be calcu-
lated for the instant concerned; in particular the arc ON which
we denote by M can be found. The rotation occurs in the

direction ON. In Fig.67,let PXJ be the solar meridian through X.
Then OJ is the heliographic longitude of X (denoted by L) and
the arc JX is the heltographic latitude of X (denoted by B).

101. The heliographic co-ordinatcs of the centre of the disc.

Referring to Fig. 67, we see that the point E on the solar
surface will be seen as the centre of the disc. Let the helio-
graphic co-ordinates of E be L, and B,. Then in the spherical
triangle PEN we have:

PN=90°, PNE=90°~1I, PE=90°~B,, and EPN=M~1L,.

We require still the arc EN expressed in terms of known quan-
tities. Now TE is the angle between the direction of the vernal
equinox and the direction of the earth as seen from the sun’s
centre C, so that TE is the earth’s heliocentric longitude. If ®
denotes the geocentric longitude of the sun, we have

TE = ® +180° ... (28).
Also since TN = Q, we see that
EN=Q— @ —180° ... (29).
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From the triangle PEN we derive the following formulae, using
D and A in succession,

tan (L,— M)=tan (® — Q)cosI  ...... (30),

sin By=sin(® —Q)sinl  ...... (31).
Assuming that M has been calculated for the time of observa-
tion, these formulae enable the heliographic co-ordinates L, and

B, of the centre of the disc to be found; L, and B, are tabulated
in the almanacs for every day during the year.

102. Position angle of the sun’s axis of rotation.

Consider rectangular axes CE, CT and CK (Fig. 67). Let
K X R be a great circle through K (the pole of the ecliptic) meeting
the ecliptic 1n R. The radius of the sphere being taken as unity,
the co-ordinates of X referred to these axes are (cos ER cos BX,
sin ER cos RX, sin RX). Now X, is the projection of X on the
plane KCT—the plane of the disc—and the co-ordinates of X,
referred to CT and CK as axes are therefore (sin ER cos .Y,
sin RX) or, since KR = 90°, (sin £B sin KX, cos KX). Let ¢
denote the angle between C X, and CK. Then we have

tan = sin ER tan KX ... (32).

Suppose that X now represents the point on the solar surface
intersected by the radius drawn parallel to the earth’s axis of
rotation. The projection CX, on the disc defines the north direc-
tion, from which the position angle of any point on the disc is
measured in practice. Now KX is the angle between the pole of
the ecliptic and the pole of the earth’s equator; hence KX = ¢,
where ¢ is the obliquity of the ecliptic. Also the vernal equinox
is 90° from both K and X. Hence it is 90° from the great circle
KXR; hence TR = 90°. But by (28), TE = 180° + @; hence
ER = 90° — (180° + ®) or

ER=210°—® ... (33).
Denoting the angle X;CK by z, we have from (32), writing x
for , tanrx = —cos ® tane = ...... (34).

Again, the projection of CP on the plane KCT will make an
angle, say, y with CK. Hence, by (32),

tan y = sin EF tan KP ... (35),
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where F is the point on the ecliptic cut by the great circle KP.
Now since K is the pole of 7R7 and P is the pole of ONJ, it
follows that N is the pole of KPF; hence FN = 90°. DBut
TN =Q and therefore TF =Q — 90°. Also,by (28),TE=180°+ @;
hence EF =180° + ® — (2 — 90°) or

EF =270°+ (® — Q) ... (36).
Also KP is the inclination I. Hence (35) becomes, using (36),
tany = —cos(® —Q)tan I ... (37).

For convenience, we shall assume that we are dealing with a
photograph of the solar disc. Let CN (IFig. 68) be the radius in
the plane of the disc correspond-
ing to the projection of the K
solar radius parallel to the Solaraxis
earth’s axis. This radius CN can
be inferred from the diurnal mo-
tion of the sun across the sky; if
the telescope is at rest, the image
of the sun will move along a
parallel of declination, that is,
perpendicular to CN; hence by
suitable means the radius CN can
be drawn on the photograph.

The position angle of any mark-
ing such as Y on the disc is
measured from CN eastwards, that is, towards the left as we
view the sun. Thus the position angle of Y is the angle NC'Y and

of X itis (360° — NOX). Now if C4 is the projection on the disc
of the sun’s axis  Nyog — » and KCA = v,

where z and y are given by (34) and (37). Thus the position
angle P of the sun’s axis C4 is given by

P=x+y ... (38).
Thus P can be calculated; it is tabulated in the almanacs.
If ¥ denotes the angle ACX (Fig. 68), X being any marking

on the dise, and @ is the position angle of X we have, since
NCX = 360° — 0, that x = P+ 360° — ¢ or

x=P—-0 ... (39).

MNorth point
of Dise

Fig. 68.
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As 6 and P may be supposed known, the former by means of the
photograph and the latter by means of the almanac, the angle
x can be found.

103. Tle heliographic co-ordinates of a sun-spot.

Let R and d denote in linear measure the radius of the sun
and the distance of the earth from the sun respectively. If S is
the angular semi-diameter of the sun—this can be found for the
day of observation from the alinanac—we have sin § = R/d or,
since § is about 16°, we can write with sufficient accuracy

S = —gcosec o (40),

in which S'is expressed in minutes of arc. Let r, and r denote the
measures of the radius of the disc and of the distance of the
spot X from the centre C of the disc (Fig. 68); r, and r can be
measured in any convenient unit on the photograph. If p, (in
minutes of arc) is the angle between the direction of the sun’s
centre and the direction of the spot, both viewed from the earth,
we have, with suflicient accuracy

&__r

8
from which p, can be determined.
In Fig. 69, let S be the position of the spot on the solar surface

and let SCE be denoted by p, E being the earth. Then
ESC = 180° — (p + p,). But from the plane triangle ESC,

. d .
sin ESC = RS0 P
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or, since p, is small (less than 16') and is expressed in minutes of
arc, d .

sin (p + py) = L1 80 1

or, using (40), sin (p+ p;) = % ...... (42).
Since p, can be found by means of (41), this last formula (42)
enables p to be calculated.

Consider now Fig. 70 in which S is the spot on the solar sur-
face, CK gives the direction of the earth from the sun’s centre C,
and P is the north pole of
the sun’s axis. The great
circle arc ES is thus the
angle p given by (42).
Denote the heliographic
longitude and latitude of S
by L and B; the corre-
sponding co-ordinates of ¥
are L, and B,. In the
spherical  triangle PES
we have: PS=90°-B,
PE=90°—B,, ES=p and
EPS=L—L,. Also, since
the point Z is seen as the
centre C of the disc and Fig. 70.
since the great circles EP and IS project into the straight lines
C4 and CX of Fig. 68, the angle PiS is equal to the angle
ACX oryx. Hence, by (39), PES=P — 6, where 6 is the position
angle of the spot on the disc. Hcnce from the triangle 2£3 we
have the formulae, using A and B,

sin B = sin Bycos p + cos Bysin pcos (P — 6) ...(43),
sin (L — L)) =sginpsin (P — f)secB ... (44).

Since By, p, P, 8 and L, are all supposcd now to be known, the
formulae (43) and (44) determine the heliographic latitude and
longitude of the spot.
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EXERCISES

1. Two planets P; and P, revolve in circular orbits at distances b, b, from
the sun. Prove that when they appear stationary to one another,
b 6
b~ 3 tan 2 tan 4,
where tan @ = 2 cot E, E being the elongation of P, as seen from P,.

2. If 9 is the angle subtended at the earth by the sun and a stationary point
of a planet’s orbit, and ¢ is the maximum elongation of the planet, prove that

2 cot 8 = sec ¢ + cosec }é.

3. Show that, if the earth and a planet be supposed to describe coplanar,
circular orbits, and the difference in longitude of the sun and the planet be 6,
the rate of change of 6 is, numerically,

27 a
s <1— ;cosf)),

where § is the synodic period of the planet, a the radius of the earth’s orbit,
and p the distance of the planet from the earth at the moment.
[Coll. Exam.]

4. Tf the line joining two planets to one another subtends an angle of 60° at
the sun when the plancts appear to each other to be stationary, show that
a? + b% = Tab, where a, b are the distances of the planets from the sun.

[M.T.]

5. If u and v are the velocities of two plancts in circular and coplanar orbits,
show that the period of direct motion is to the period of retrograde motion as
(180° — 6): 8, where cos 6 = uv/(u® — wv + v%). [Coll. Exam.]

6. If a and b are the radii of the orbits (assumed to be circular and coplanar)
of the earth £ and a superior planet P, and u and v are their respective linear
velocities, prove that the square of the velocity of P relative to K at a stationary
point is (u? — v?) (bu — av)

bu + av

7. One planet whose mean distance from the sun is a appears to have a
phase E to another planet whose mean distance from the sun is 6, and the latter
appears to have a phase V. Prove that, if the inclinations of the orbits to each
other and their eccentricities be neglected,

BV (1—V)=a*E(1- E).
If the distance of Venus from the sun is 0-72 astronomical units, find what
part of the earth’s surface appears illuminated as seen from Venus.

8. The heliocentric distance of an inferior planet P, moving in a circular orbit
in the ecliptic, is b astronomical units; the orbit of the earth (E) is also assumed
circular. 1f the heliocentric co-ordinates of P and £ are (b cos f9, b sin f6) and
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{cos @, sin ) respectively, § being measured from inferior conjunction, show
that for a stationary point
cos (f —1) @ L+ /o2

RIS

9. Prove that when a planet whose orbit does not eoincide with the ecliptic
is absolutely stationary as seen from the earth, its direction of motion and that
of the earth must intersect on the line of nodes, and that its projection on the
plane of the ecliptic is also stationary. [M.T]

10. Neglecting the inclination of the plane of a planet’s orbit to the ecliptic,
prove that, in latitude ¢ (> ¢), the altitude of an inferior planet at sunrise or

sunset never exceeds R —_
sin™! (sin £ cos ¢ — e),

where E is the maximum elongation of the planet; and that this most favourable
case can only occur when maximum elongation coincides with an equinox.
How is this result modified if the observer is in the tropical zone?
[Lond. 1925.]

11. If the orbit of an outer planet is an ellipse of eccentricity e and semi-
axis @, the inclination to the ecliptic being zero, and if it is in opposition at
perihelion, show that its motion will appear direct if a, in astronomical units,
is less than (14 €)/(1— e). [Ball.]

12, Show that the phase of a superior planet, as seen from the earth, is least
when the earth appears half illuminated to the planet, but that the apparent
brightness of the planet is a maximum at opposition and a minimum at
conjunction. [Coll. Exam.]

13. Assuming that Venus and the earth describe circular orbits in the
ecliptic, show that Venus will appear brightest at elongation 8 given by
cos f = £{(3+ a“)§ —a},
where a is the heliocentric distance of Venus in astronomical units.
[Lond. 1926.]

14. Show that the “correction for defective illumination” of Mars (i.e. the
apparent width in arc of the uniiliuminated crescent) is a maximum when Mars
is at a geocentric distance (b2 — a2)/, the orbits of the earth and Mars being
treated as circles of radii @ and b. Show that when the disc of the moon is seen
at night by earthshine there is a narrow crescent not illuminated by either sun-
light or earthshine and that the width of this crescent does not exceed 07-5.
(Lunar parallax = 577; semi-diameter = 13".) (3.T.1926.)

15. Assuming the diameters of the earth and Venus to be negligible, show
that ¢, the heliocentric elongation of Venus from the earth at the beginning or
end of a transit, is given by the equation

b2r2cos? ¢ — 2br B2 cos ¢ + R> (b2 + r?) — b2r2 = Q,
where R is the sun’s radius, and b, r the distances of Venus and the earth from
the sun's centre. {Ball.]



CHAPTER VIII
ABERRATION

104. The law of aberration.

The phenomenon of aberration was discovered in 1728 by
Bradley, later Astronomer Royal, as a result of a scries of meri-
dian observations of the second magnitude star y Draconis. In
1875, the Danish astronomer Roemer had established that light
travelled with a finite velocity and Bradley’s observations were
interpreted by recognising that a star’s position in the sky could
be displaced by an amount depending on the ratio of the earth’s
orbital velocity to the velocity of light, and on the position of
the particular star concerned. The earth’s average orbital speed
isabout 18} miles per second and the velocity of light is 186, 280
miles per second ; thus the ratio just mentioned is small but not
negligible.

In Fig. 71, let C represent the centre of a telescope’s object-
glass and E the eye-piece at the moment when a ray from a star
X arrives at C. Let EF be
parallel, at this moment, to the
direction in which the earth is
moving around the sun. Let = be
the time required by the ray to
pass through the telescope; in
this interval the earth has moved
through a distance EE, or Vr,
where V is the earth’s velocity.
Denote by ¢ the velocity of light.
Then when the ray from the
star reaches the eye-piece, the
latter is at £, and we have CE, = cr. If the earth had no velocity,
the direction in which the telescope would be pointed is along
E,C, which we describe as the true direction of the star. Actually,
owing to the earth’s motion, the telescope has to be pointed in
the direction EC. Complete the parallelogram EE;C,C. Then
E, C, is parallel to EC and thus E, C, is the apparent direction of
the star at the moment of observation. Let 8, 6, denote CIZ’IF,

X

Fig. 71.
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C, EA’,F respectively. Then the angular displacement § — 6, is said
to be due to aberration. From Fig. 71 it is seen that aberration
displaces the star’s true direction towards the direction EF of
the earth’s motion and in the plane XE, F'.
In the triangle CE,C,,

sinCE,C, CC,

sinCC,E, CE;’
But CC, = EE, = Vr and CE,| = ¢r. Hence we derive

sin (§ — 0,) = gsin 6.

Now V/cis small and consequently § — 6, is small. We can then
write with all needful accuracy (8 — 6, being expressed in seconds
of arc) 1%
f—0 = - sin 6, cosec 1"

or 06— 0,=«sing, .. (1),
in which K= %/cosec 1" ceeene(2),

x is defined to be the constant of aberration; its value which can
be calculated from the values of V and ¢ is about 20"'-5. The
definition and value of « will be considered later in greater
detail. It is clear that as 8 — 6, cannot exceed 20"'-5 we can
write (1) with sufficient accuracy in the form

6—0,=xsinf ... (3).
The law of aberration is contained in formula (1) or (3).

103. Annual aberration in ecliptic longitude and latitude.

For the present we shall neglect the eccentricity of the earth’s
orbit and assume simply that the orbit is a circle with the sun
at the centre, and that the orbital velocity V is constant. If E
(Fig. 72) is the position of the earth at any time, its direction of
motion is along EF at right angles to SE. Let ET or ST, be the
direction of the vernal equinox; then TES is the geocentric
longitude of the sun (denoted by ®). The geocentric longitude of
F is thus (@ — 90°). Accordingly the point F of the ecliptic,
towards which the earth’s motion 1s directed, is 90° behind the
position of the sun on the ecliptic. With reference to the earth
as centre of the celestial sphere, the point F evidently makes a
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complete circuit of the ecliptic in a year; the aberration in this
instance is called annual aberration, and the displacements to
which it gives rise are repeated in yearly cycles.

In Fig. 73, F defines the direction of the earth’s motion and
TF = @ — 90°. Let X be the true position of a star (it defines
the direction in which the star is viewed from the sun). Then as
the aberrational displacement takes place in the plane XEF, the
star will appear to be displaced along the great circle X ¥ and

Fig. 72. Fig. 73.

will be seen at X,. With the notation of the previous section,
XF =6, X, F = 6, and therefore XX, is given by (3), so that
XX, =+rsin8 ... (4).

Join KX and KX, by great circles, K being the pole of the
ecliptic, and draw the small circle XY parallel to the ecliptic.
If A, B are the longitude and latitude of X and ), B, are the

corresponding co-ordinates of X,, then A, — A= XKy and,
gince X¥ = XK ¥ sin KX, we have XY = (A, — A) cos B. Also
B— B=X,Y. Write

AA=)A — ) and AB=8,-8.
Then XY =ArcosB and X, ¥ =—-A8 ... (5).
In the infinitesimal plane triangle XX, Y, let ¢ denote Y XX,.
Then XY =XX,cos¢ and X,¥ = XX, sin .



ABERRATION 181
Hence from (4) and (5)
AX=«ksinfcosdsecf ... (6),
AB=—«ksinfsing ... (7).
Now in the spherical triangle KXF, KX = 90°— 8, KF = 90°,
XF =0,KXF = 90° + ¢ and XKF is the difference of longituce

of F and X, so that XKF = (@ — 90°) — A.
By the sine-formula B,

sin XF sin KXF = sin KF sin XKF,

and consequently g goog p=—cos{(®—A) ... (8).

By formula G,
sin XF cos KXF = cos KF sin KX ~ sin KF cos KX cos XKF,

and thus sinfsin ¢ = sin Bsin (® —A) ... (9).

From (6)...(9), we obtain the formulae
AA=—«ksecfBcos(®—2) ... (10),
AB=—«ksinBsin(®@—-2) ... (11).

These formulae—(10) and (11)—give the displacements in
longitude and latitude due to annual aberration.

106. The aberrational ellipse.

Referring to Fig. 73 we see that the aberrational displacement
from X to X, isequivalent to the two displacements from X to Y
and from Y to X;. Denote these by = and y respectively. Then

z=ANcosB=—xcos{®—A)  .... (12),
y=—A8 =«ksinfBsin(®—~2A) ... (13),
from which, by eliminating (® — A), we obtain
xZ yz
R Sk S (14).

This is the equation of an ellipse, known as the aberrational
ellipse. During the course of a year the star appears to describe
this curve on the celestial sphere, the ellipse centre being the
star’s true position. The semi-major axis is «, parallel to the
ecliptic, and is therefore constant for all stars; the semi-minor
axisis « sin B, perpendicular to the semi-major axis. The aberra-
tional displacement is greatest when & = + «, that is—from (12)
—when ® — A = 0° or 180°, Assuming that we know the value
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of A for a particular star, we can thus obtain the two values of ®
(the geocentric longitude of the sun) corresponding to maximum
displacement and so we can derive from the Astronomical
Ephemeris the date when this occurs. Thus, if A= 0° the
aberrational displacement is a maximum when ® =0° or 180°,
that is, at the spring or autumn equinox.

For a star on the ecliptic (8 = 0°), the aberrational ellipse
degenerates into a straight line (an element of the ecliptic) and
for a star at the pole of the ecliptic, it becomes a circle.

107. Aberration in right ascension and declination.

As before, let X be the true position of the star and X, its
apparent position (Fig. 74). Let a, 8 be the right ascension and

Fig. 74.

declination of X, and ¢, 8, the corresponding co-ordinates of X;.
Draw a small circle XY parallel to the equator. Then

XPY =¢,—a and XY = XPY sin PX.

Let Ae=a, —a and AS =3, — 3.

Then Ae = XY cosec PX = XY sec .

From the figure, X,Y = — AS. Denote Y)%Xl by . Then
XY =XX,cosy and X,Y = XX, sin ¢,
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Hence by (3), since XX, = § — 0, in the notation of section 104,
Aa = ksinfcosfsecd ... (15),
AS = — ksinfsing ... (16).

Let A, D denote the right ascension and declination of F (the
point on the ecliptic towards which the earth’s motion is
directed). In the spherical triangle PXF, wehave: PX = 90°—§,

PF=90°— D, XPF =4 — o, XF = 0 and PXF = 90° + ¢.
By formula B,
sin X F gin PXF = sin PF sin XPF,
from which sinfcosyp=cosDsin(4d —a) ... (17).
By formula C,
sin X F cos PXF = cos PF sin PX — sin PF cos PX cos XPF,
from which
— sin @ sin ¢ = sin D cos § — cos Dsin § cos (4 — a) ...(18).
We thus derive from (15)...(18),
Ag=ksecdcosDsin(4d—-a) ... (19),
A8 = xsinDcosd — xcos Dsindcos (4 — a) ...... (20).
Now consider the triangle F7@ in which PF@G is the meridian
through F. We have: PF = ® — 90°, FT'G = ¢ (the obliquity of
the ecliptic), TG = 4, FG = D and FGT = 90°. By formulae
A, B and C, we derive

sin ® = cos 4 cos D
—cos ®@sine=sinD veeeen(21)
— cos @ cose=sin 4 cos D

Now from (19) we have

Aa = x sec 8 [cos a.sin A cos D — sin a.cos 4 cos D],
so that, using (21), we obtain

Ad =a;— a= — ksecd[cosacos @ cose + sinasin @]

Similarly we obtain from (20) and (21),
A8 =8 — 8= — kcos ® cos ¢ (tan € cos & — sin a sin §)
— kcosasindsin @ ...(23).
As « is expressed in seconds of arc, the formula for Aa o1

(@, — a) gives this quantity also in seconds of arc. It is of course
7-2
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usual to express right ascension in time-measure and we inust
then suppose the right of (22) to be divided by 15.
Let

C=—rxcosecos ® D=—ksine@
¢ = {: cos asecd, ¢’ =tanecosd-—ginasind; ...... (24)
d = {4 sin a sec §, d’ = cosasind )
Then we have from (22), (23) and (24),
ey=a+Cc+Dd ... (25),
§=8+Cc'+Dd ... (26).

In these equations, C and D depend on the sun’s longitude and
cousequently on the time of the year to which they refer; the
values of C and D, which are known as Besseltan Day Numbers,
vary rapidly and so are tabulated in the almanacs for every day
of the year. The quantities ¢, ¢’, d, d’ depend only on the co-
ordinates of the star and the obliquity of the ecliptic, and can
therefore be calculated once for all.

It is to be remarked that (25) and (26) give only the effect of
aberration on the star’s co-ordinates.

Arother method of simplifying the computations is as follows.

Let hcosH=—«sin ®; hsin H=— kcosecos ®;

t=—«ksinecos @.
Then when ¢, and a are expressed in time-measure, equations
(22) und (23) become
o, =a+ %hsin(H + e)secd ... (27),
and 8, =8+1%cosd+ hecos(H + e)sind ...... (28).
The values of H, h and 4 (the Independent Day Numbers) are

also tabulated in the almanacs for every day of the year. In most
cases they are simpler to use than the Besselian Day Numbers.

108. The elliptic motion of the earth and aberration.

So far, we have assumed that the earth moves with constant
speed in a circular orbit. We consider now the problem in its
general aspect. It has been shown in section 66 that the velocity
along ET (the tangent at E) in an elliptic orbit (Fig. 75) is
equivalent to a constant velocity h/p along EF perpendicular
to the radius vector SE, together with a constant velocity ek/p
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along Ef at right angles to the major axis 4B. In the notation
of Chapter v, we have /% = n2a®p and p = a (1 — €?); hence, if
we write » = 2x/T, where T is the period in the orbit, we have
h_ e (29).
P T (1-e2)?
The total displacement, in any co-ordinate, of a star’s position
due to aberration can be regarded as made up of two displace-
ments, the first due to the constant velocity %/p at right angles
to the radius vector, and the second due to the constant velocity
eh/p perpendicular to the major axis. We consider these in turn.

er\ T Tf
]

r

£

Fig. 75.

Since EF is perpendicular to SE, the geocentric longitude of
F is the geocentric true longitude of the sun less 90° or (® — 90°).
We thus have the same geometrical conditions as are represented
in Fig. 73. We consider the corresponding displacements in
longitude and latitude. If these are denoted by A\, and AS,,
they are given directly by (10) and (11), so that

A\, = —«ksecfScos(®@—A) ... (30),
AB, = —«ksinfsin(®@—2A) ... (31),
in which « (in seconds of arc) is defined after the manner of

formula (2) by h cosec 17
o= v cosc

» . ._c i
. 2ra cosec 17’ o
or, usig (29), by K = ;Emg ...... (.)2)

This is the precise definition of the aberration constant «.

’
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We now consider the aberrational displacements A},, AfB,
arising from the constant velocity eh/p perpendicular to the
major axis. In Fig. 75 let ST be the direction of the vernal

equinox; then 734 is @, the longitude of perihelion. Draw EA4,
parallel to SA4; then the
geocentric longitude of 4,
is w. Also Ef is perpen-
dicular to E4,; therefore
the geocentric longitude of
fis o+ 90°. In Fig. 73,
where TF is ® — 90°, we
derive the aberrational dis-
placements AA,, AB, cor-
responding to the velocity
hip. It is now seen from
Fig. 76, in which 7f is
w4 90°, that the formulae
for AA,, AB, corresponding
to the constant velocity
eh/p can be written down Fig. 7.

from (30) and (31) by substituting @ + 90° for ® — 90°, that
is, 180° + @ for ®, and by writing eh/p for h/p or ex for «. We

thus derive AN =+ exsecBcos (@ —A) ... (33),
AB,= + exsinBsin(@—A) ... (34).

Hence the total aberrational displacements resulting from the
motion of the earth in its elliptic orbit are given by

AX = AX + Al = — ksec fcos (® — A) + ex sec B cos (@ — A)

Note that the expressions for A), and AB,, which are called the
E-terms, are independent of the sun’s longitude and so are the
same for any given star throughout the year. As the value of
the eccentricity e is about 1/60, the value of ex is about 07-3.
Although =, ¢, A, B are slowly varying quantities, the changes in
the E-terms are so minute that for several hundred years at
least they can be regarded strictly as constants.
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Since AX = A, — A, we have
A=A+ AN+ AMy,

with a similar equation in B. Instead of applying the value of
AM, in this equation, it is mors convenient to regard (A + AA,) as
the true longitude of the star; similarly for the true latitude.

In the same way we can derive the aberrational effects, taking
into account the ellipticity of the earth’s orbit, on the equatorial
co-ordinates ¢ and 6. Again we suppose that the E-terms,
depending on the velocity ek/p perpendicular to the major axis,
are incorporated in the true co-ordinates ¢ and 8.

Thus the effective formulae for giving the aberrational dis-
placements are, in ecliptic and equatorial co-ordinates,

y,=A—«secBcos(®@—A) ... (37),
Bi=B—«sinfBsin(®@—2A) ... (38),
and =+ Cc+Dd .. (39),
&=56+Cc+Dd (40),

where C, ¢, ¢’, D, d and d’ are defined by (24).

109. The measurement of the constant of aberration.

The accurate determination of « is a practical problem
that appears at first sight to be comparatively simple and
straightforward. In order to reduce the effects of refraction
which, even under the best conditions, may not be known with
the certainty essential in this investigation, only stars cul-
minating very near to the zenith are selected for observation.
Let 3 be the declination of a star culminating a little south of the
zenith on a certain date. For simplicity we shall neglect the
effects of precession and nutation, which will be discussed in a
later chapter. The apparent declination 8, which will include the
aberration displacement will be given by (23), which we write

in the form S=8+kx .. (41),

where 2 is the coefficient of « on the right of (23).

In Fig. 77 let ZX' be the observed zenith distance (denoted
by z) of a star on the meridian and let XX’ represent the
refraction r. Then ZX =z+r. Now PX = 90°—3;, and
PZ = 90° — ¢, where ¢ is the latitude, so that

ZX =¢—8,=¢— 5 — .
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Hence 24+r=¢—08—xx
or b=8+z+r+uxxr ... (42).

Suppose that another star culminates at ¥, a little north of
the zenith, and let Z denote its observed zenith distance and R
the refraction. Then ZY = Z + R. Also if D is its true declina-

yY Z ,
X Y
P
Fig. 77.

tion and D, its apparent declination (as affected by aberration),
then by (23) I)1 =D+ KX,

where X is the value for this star of the coefficient of « on the
right of (23). Now PY = 90° — D, and PZ = 90° — ¢. Hence
ZY = D, — ¢, and we have
Z+R=D+«X - ¢
or ¢=D—-Z-R+«X ... (43).
Hence from (42) and (43),
20=0+D)+(z—2Z)+ (r— R)+«(z+ X) ...(44).

In this equation we assume (8 + D) to be known and (z — Z) is
the difference of the measured zenith distances. As the stars
culminate close to the zenith, the telescope can remain unaltered
in position for the observations of the two stars, the interval
between the transits—if the stars have been carefully chosen—
being at most a few minutes. Although the meridian circle has
been used in this problem it has been superseded by the photo-
graphic zenith telescope which records, on a photographic plate,
the trails of the stars as they pass across the meridian. The
measurement of the distance between the trails of the two stars
we are considering gives the value of (z — Z) very accurately.
The difference (r — R) of the refractions may be assumed known
with the necessary accuracy. The quantity (x + X) can be easily
calculated.

About six months later, the observations are repeated. We
have, as before, a subscript referring to the new observations,

20=0+ D)+ (25— Z)+ (r;— R) + x (&, + X;) ...(45).
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For simplicity we shall assume that the interval is such that the
sun’s longitude has increased by 180° exactly. By referring to
(23) we see that the values of 2, and X, will now be equal to
— z and — X respectively, so that we can write (45) as

26=0+ D)+ (z— Zy) + (n— R) ~ x(z+ X) ...(40).
Subtracting (44) and (46) we obtain
2@+ X)+(e= D)~ (a—Zy)+ (r—B)— (n=T) =0

...... (47),
from which « can be derived.
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This procedure—of eliminating the latitude in (44) and (46)
—is, however, unjustified when the object of the investigation
is the precise determination of x. It was discovered by Kiistner
that the earth’s axis of rotation is not quite fixed relatively to
the crust, and as the latitude ¢ is defined with reference to the
axis of rotation, the value of ¢ undergoes minute changes of the
order of a few tenths of a second of arc. Thus the values of ¢ in
(44) and (46) must not be presumed to be identical. The deter-
mination of the aberrational constant is consequently bound up
intricately with the problem of the variation of latitude. We shall
not prolong the discussion further, but merely recognise that
although the measurement of the aberrational constant is
straightforward in principle, in practice it is not so, and the
constant of aberration is more precisely determined from the
theoretical considerations of the next section. Fig. 78 shows the
changes in the latitude of Greenwich during 1922-3 and 1926-7.

110. The theoretical value of the aberration constant,
Trom (82), « is given by
_ 2macosec1”
T (1— et
in which a is the semi-major axis of the earth’s orbit, ¢ is the
velocity of light, 7' is the sidereal year expressed in mean solar

scconds and e is the eccentricity of the earth’s orbit. The
accepted values of these quantities are:

a = 149,600,000 kilometres,

¢ = 299,792-5 kilometres per second,
T = 31,558,150 seconds,

e = 0-01672,

from which, by calculation, « is found to be 20""-496. The values
of the astronomical quantities quoted above are those adopted
by the International Astronomical Union in 1964 (Trans. IAU,
vol. x11B, p. 594, 1966). These values are generally used in the
Astronomical Ephemeris, although the apparent co-ordinates of
the sun and the inner planets are based on an older value of «,
namely 20"-47. The formulae necessary for conversion to the
TAU system of constants are, however, provided in the Explana-
tion that follows the main text.
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111. Diurnal aberration.

In addition to the yearly motion of the observer around the
sun, there is also the daily motion due to the rotation of the
earth about its axis. Let p denote the radius of the earth and
¢ the latitude of an observatory, which describes in the courss
of a sidereal day, due to rotation alone, the circumference of the
small parallel of latitude whose radius is p cos ¢. As there are
86,164 mean solar seconds in a sidereal day the speed concerned

2mp cos ¢

86164
expressed in kilometres. Taking p to be 6378 kilometres, the
speed is easily found to be 0-465 cos ¢ kilometres per sccond.
Define k (in seconds of arc) by

k= 0-465

kilometres per second, where we suppose p to be

cosdecosec 1’ ... (49),

¢ being the velocity of light in kilometres per second. Then for
an observatory in latitude ¢, k is the constant of diurnal aberra-
tion. Inserting the value of ¢ which we have stated previously,
we find &k = 0"7-32 cos ¢.

Now the direction of motion is perpendicular to the plane of
the observer’s meridian and it is eastwards. In Fig. 79, let X" be
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the true position of a star at a given moment on the celestial
sphere. Owing to diurnal aberration it will be displaced to X,
towards the east point E. Denote XE by 6 and X, £ by 6,. Then
by the law of aberration [formula (3)] we have
XX;=0—-06,=ksinf ... (50).

Draw a parallel of declination X Y. Since hour angle is measured
westward from the observer’s meridian, the hour angle of X is
less than that of X, so that if H and H, are the respective bour

angles, H — H, = XPY. Let AH = H, — H. Now
XY = XPY sin PX = XPY cos 33,
where 8 is the true declination of the star.
Hence XY = — AH cos 8.
Denote by $, the declination of X,. Then X,Y =8 — §; = — AS.
If YXx 1=, we have
XY =XX,cos; X, Y =XX, siny,
that is, using (50),
—~ AHcosd =ksinfcosh; — Ad=ksinfsiny ...(51).
In the spherical triangle PXE, PX = 90° - 8§, PE = 90°,
XE =6, PXE = 90° + ¢ and XPE = H — 270°. By formulae
B and C we have
sin XE sin PXE = sin XPE sin PE,
and
sin XE cos PXE = cos PE sin PX — sin PE cos PX cos XPE.
These become, on inserting the values of PX, ete.,
sin f cos Y = cos H,
and sin #sin ¢y = — gin § sin H.
Hence from (51) and putting k£ = 0”-32 cos ¢, we obtain
AH =H,— H=—0"32cos¢cos Hsecd ...... (52),
and A =8,—8 =0"32cos¢sinHsind ...... (53).
These equations—(52) and (53)—give the effect of diurnal
aberration on the hour angle and declination of a star.
When the star is on the meridian it is seen from (53) that the
effect on declination is zero.

The displacements due to diurnal aberration are so small that
they are generally neglected. An exception occurs in the obser-
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vation of stars with the meridian circle. It is seen from Fig. 79,
or from formula (52), that diurnal aberration displaces the star
eastwards of its true position; the star will therefore transit later
than it would if the diurnal aberration were ineffectual. From
(52) the transit is delayed by
0-32
15
(the hour angle H at the time of transit is 08). For a fixed
observatory, this expression is of the form C sec 8, which is
precisely the form due to the effect of collimation error on the
time of transit of a star. If ¢ is the time of transit actually
observed, the true time (considering only the effect of diurnal

aberration) is t— 0021 cospsecd ... (54).

The second term in (54) is the correction mentioned in section 46
and inserted in formula (9) of Chapter 1v.

cos ¢ sec 8 (seconds of time)

112. The correction for light-time.

Let ¢ be the instant at which the sun or moon or a planet or
comet is observed. Since light has a finite velocity, the moment
of observation is—let us say—r seconds after the instant at
which the ray, which finally enters the observer’s eye, has left
the particular object concerned. Let us suppose the object to
be a planet. The position observed at time ¢ is affected by annual
aberration and, after applying the general formulae for aberra-
tion derived in previous sections, we deduce the planet’s position
as it would be found if the earth were at rest. But this position
is not the position of the planet at the time ¢ of the observation;
it is the position corresponding to the instant when the ray left
the planet, that is to say, it is the position at time ¢ — r. This
correction for the light-time and the annual aberration correc-
tion are usually applied together as they have very similar
origins. The former arises from the planet’s velocity and the
latter from the earth’s, and only the relative velocity of the two
bodies is significant. When the effects are combined, their com-
bination is called planetary precession. The resulting correction
is very simple. We merely add to the observed right ascension
and declination quantities rAe and 7AS, where Ae and A8 are
the respective co-ordinates’ rates of change per second.
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EXERCISES

1. Find the positions of stars which (i) are unaffected by aberration, (i) are
affected only in latitude.

2. The angular distance between two stars which have the same latitude g
is 8 and the mean of their longitudes is A; show that the increase in 6 due to

aberration is 2x tan §8sin (A — ®) (cos® B — sin?}6)2. [M.T.)

8. Prove that the angular distance between two stars whose ecliptic co-
ordinates are (A, B) and (A;, ;) is unaltered when the sun’s longitude ® is

given by c08 B8in (® — A) + cos B 8in (® — A)) = 0. [Ball.]

4, Show that, in latitude ¢, a star of declination 8 will, owing to diurnal
aberration, appear to move in an ellipse whose semi-axes are m cosé and
m cos ¢ sin 3, where m is the ratio of the earth’s circumference to the distance
described by light in one day. [Coll. Exam.]

6. Prove that, when the aberration in declination has its greatest numerical
value, the arcs on the celestial sphere joining the star to the sun and to the pole
of the equator are at right angles. [Ball.]

8. If «is the constant of aberration, ¢ the velocity of light, G the constant of
gravitation, M the mass of the sun, and / the semi-latus rectum of the earth’s

orbit, show that GM = L3, [M.T.1922.]

7. Show that at any place and at any time there is a position of a star such
that the aberrational effect is equal and opposite to that of refraction.

Show also that at midnight on the shortest day the zenith distance of this star
is given by an equation of the form

sin®z+ Asinz=1,

the correction for refraction being assumed proportional to the tangent of the
zenith distance, and the earth’s orbit to be circular. [3£.7. 1900.]

8. If two planets revolve about the sun in circular orbits of radii @ and b,
show that the aberration of one as seen from the other is greater at opposition
than at conjunction by an amount equal to

Va- Vb
va+ Vb :
9. If u and v are the equatorial components of the earth’s velocity in the

direction of ¥ and perpendicular to this direction respectively, show that the
Besselian Day Numbers may be defined as

[M.T)

C = vfc—excosw cose,
D = — ujc — exsinm.



CHAPTER IX

PARALLAX

113. Introductory.

The method of determining the distance of a heavenly body
is, in principle, essentially similar to that adopted in land surveys.
If a surveyor wishes to determine the distance of an object 4
from a point B, he first measures a base-line BC and with a
suitable instrument, such as a theodolite, he observes the angles
ABC and ACB. The solution of the plane triangle gives him the
distance of the object A from B. As regards the astronomical
survey of the solar system, we shall at first suppose the necessary
base-line to be defined by the straight line joining two widely
separated points on the earth’s surface. It is thus necessary to
consider more particularly the dimensions and figure of the
earth. The maximum base-line obtainable in this way is not
quite 8000 miles, corresponding to the earth’s diameter; as this
is wholly inadequate in the investigation of the distances of even
the nearest stars, a different choice of base-line has to be made,
as we shall see later, in dealing with stellar distances.

114. The geoid.

The approximate figure of the earth is called the geoid, and
for astronomical purposes it is sufficient to consider it a spheroid

Ya Y 7
p 0
.
O D 7722]B
Q

Fig. 80.
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of revolution, its minor axis being coincident with the diameter
joining the north and south poles. A terrestrial meridian, such
as POBQ in Fig. 80, is then an ellipse, the major axis CB being
in the plane of the equator. If a denotes CB, the earth’s equator
is a circle of radius a. Denote the minor axis PC by b and the
eccentricity of a meridian section by e. Then

b*=a2(l—e?) ... (1).
Referring the ellipse POBQ to axes CX and CY, we have its
equation in the well-known form

x2 2
(;2+%§=1 ceeeee(2),

115. Astronomical and geocentric latitude,

Consider an observer at O (Fig. 80). If we neglect any local
gravitational irregularities, in the neighbourhood of O, which
affect slightly the direction given by a plumb-line, the direction
of the observer’s zenith is defined to be perpendicular to the
surface of the geoid at O; that is to say, it is in the direction
DOZ, this line being the normal at O to the ellipse POBQ. Z is
said to be the astronomical zenith of the observer; it is from this
zenith that zenith distances are measured, for example, with the
meridian circle. The angle which DOZ makes with the equatorial
radius CB is the astronomical latitude of the observer; in Fig. 80,
it is the angle ODB, denoted by ¢. Join € and O and produce
CO to Z'; then Z' is said to be the observer’s geocentric zenith
and the angle OCB, denoted by ¢’, is called the geocentric latitude
of 0. The angle ZOZ’ between the directions of the astronomical
and geocentric zeniths Z and Z’ is called the angle of the vertical,
usually denoted by v. We now investigate the relationship
between v and ¢.

If «, y are the rectangular co-ordinates of O with respect to
the axes CX and CY, we have y/r = tan ¢'. Also tan ¢ is the
slope of the normal DOZ, and it is given by a well-known formula

a2
tan¢=—g—b—2,

H y 2
ence = tan ¢’ = pr tang ... (3).
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On substituting in (2) the value of y, given by (3) in terms of
x and ¢, we obtain

a2 b
a2t xzt—zztzngb =1,

. atcos? ¢
from which 2% = prpe ey s SRS (4),

or, replacing 5% by a? (1 — e?),

a?cos?e

2 ___ fxd
= iy Fsind cense ().

.. a? (1l — e?)?sin? )
Similarly y?= §_ - s)in2¢ o (6).

Let p denote the radius vector CO; then
x=pcos¢’; y=psind’,
Hence, by (5) and (6),

, a cos ¢ -
x=peos¢> =('l—:‘—~‘6251n‘2‘(z—)‘£ ...... (l),
. ., a(l—e¥sing
= =" L 8),
y=psing = (8)
from which  pt— L= (2 —eYsinié] (9).

1—e?sin?¢

Equations {7) and (8) are written in short as « = aCcos¢,
y = aSsiné, where C and S are clearly functions of ¢ only. They
are tabulated in the Astronomical Ephemeris.

Multiply (7) by sin ¢ and (8) by cos ¢ and subtract; then,
since ¢ — ¢’ = v, we obtain
ae’sin ¢ cos ¢
(1 — e?sin? ¢)}
Again, multiply (7) by cos ¢ and (8) by sin ¢ and add. Then

psinv= eeer.(10).

pcosv=a(l—e*sin?$)t ... (11).
Hence, from (10) and (11),
t n - 62 Sig,glé-
MU= g T ersintd)
e?sin 24

= éjéé; "ez’ém ...... ( 1
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Denoting e?/(2 — e2) by m, formula (12) becomes
m sin 2¢
1+ mcos24
Now e is about 0-08, so that m is about 0-003. We can, in con-
sequence, obtain a rapidly converging series for v in the following
manner. From (13) we obtain, ¢ denoting the square root of — 1,
1+vtanv 1+ m (cos 2¢ + i sin 2¢)
I—itanv 1+ m (cos 2§ — isin 26)’

tan v =

or €240 = 1+ me™ mett
T 14 me-%4?
whence 2tv = log (1+ me?*) — log (1 + me~2%),

Using the logarithmic expansion, we have

. ; ; m?, . ;
200 = m (% — ™) — 5 (et — e) 4 ...,

2
from which 'v=msin2¢—r%sin 4+ ...

Expressing v in seconds of arc, we obtain
,_ . _ . 8in2¢ 1m?sindd 1m®sin 6
b =M T T2 w17 T3 17

When ¢ is given and e (or m) is known, this formula enables the
calculation of the angle of the vertical, and hence of the geo-
centric latitude ¢’, to be made simply and easily.

116. The figure of the earth.

In geodesy it is usual to deal with the flattening or ellipticity
(denoted by f) of the terrestrial meridian; it is related to the
eccentricity by

f=a’;b=1_(1_ez)} ...... (15).

The dimensions of the geoid, adopted by the IAU in 1964, are:
a = 6378-160 km,

f=1/298-25.
Then b= 6356-7747 km,

e = 0-00669454
and m = 0-00335851.

2

Hence M 69274 and ' = 116,
sin 1 2sinl
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Keeping only the first two terms in (14), we der.ve the formula
for the angle of the vertical as

v=¢ — ¢ = 692"T4sin2p — 1"16sindd ...(16).
By means of this formula we can calculate the geocentric
latitude ¢’ when the astronomical latitude ¢ is given. For
example, the value of ¢ for Greenwich is 51° 28" 38''-2, and

¢ —¢' = 675709 + 0”51,

whence ¢ ' =51° 17" 22-6.

117. Geocentric parallazx.

In Fig. 81, let O be the observer, Z’ his geocentric zenith and
M the centre of the moon or sun or planet. Let 2" and z denote
the angles Z'OM and Z'CM and p the angle OMC. Let p denote

Fig. 81

the distance of O from the earth’s centre € and r the geocentric
distance CM of the body M. Then

Z=z+0p veens(17),
sinp = L;sin z veeee.(18).

The angle p is called the parallazx of the body M ; it is the angle
between the direction of the body as seen from O and the
direction from the earth’s centre regarded as the standard view-
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point. If p can be determined from observations, the distance r
of the body can then be derived from (18), in which p may be
presumed to be known and 2’ derived from zenith observations.
The greater the value of r, the smaller is the angle of parallax p.
As 2’ is greater than 2, the effect of parallax is to increase the
zenith distance of the body as observed at O, and this displace-
ment takes place in the plane defined by CZ’ and CM.

When 2’ is 90°, the parallax p’ is given by sin p’ = p/r. In
this case, p’ is called the horizontal parallax for the observer at 0.
If the observer is on the equator and M is on the horizon, its
parallax P will then be given by

. a
s1nP=—r eeeee.(19).

P is called the equatorial horizontal parallax.

Owing to the effect of elliptic motion, the geocentric distance
r of the moon or sun will vary during the orbital period, and if
7, denotes the mean geocentric distance, we obtain from (19) the
mean equatorial horizontal parallax P, given by

sin Py = ; ...... (20).
0
Writing (18) in the form
sinp="2.2 Doginy
p=- r oy n e
we have sinp = (P)(2) sin P, sin 2’ 21
p=(, )\ )sintysinz’" ... (21),

in which it will be sufficient to regard p/a and r,/r as known, the
former by formula (9) and the latter from the circumstances of
the orbital motion.

118. The parallax of the moon.

We shall now indicate how the parallax of the moon can be
determined from observation. We suppose that there are two
observatories O and O, (Fig. 82) on the same terrestrial meridian,
one in high northern latitude and the other in high southern
latitude. This choice is made to ensure that the base-line deter-
mined by O and O, is as large as possible. Let us assume that
the meridian zenith distances of the moon’s centre are measured
on the same day with meridian circles at O and O,. These zenith
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distances are of course measured with reference to the astro-
nomical zeniths Z and Z, at O and O, respectively (Fig. 82).
After the corrections for refraction have been made, we shall
denote these results by { and {;. Thus ZOM = and Z,0, M = {,.
If v and v, denote the angles of the vertical at O and O, and
2’ and z," the angles Z’'0OM and Z,/0,M (Z' and Z, are the
geocentric zeniths at O and 0,), we have
2={—-wv and z' = ~ .
A
/

’\fé

)

M

Denoting the angles of parallax for O and O, by p and p, and
the angles OCH and O,CM by z and z,, we have
p=2 —z and p, =2 — 2z,
and therefore
p+om=(+4L-(+n)—(+z) ...(22).
Butz 4 2z, = 06‘01 = OCB + Olé'B, where CB is the equatorial
radius in the meridian of O and O,. But OCB and 0,CB are
respectively the geocentric latitudes of O and O, which we
denote by ¢’ and ¢,". Hence
2+ =¢"+ .
Also if ¢ and ¢, are the astronomical latitudes of O and O,
¢ =¢ +vand ¢, = ¢, + v;. Hence (22) becomes

P+oi=C+4L—¢— ¢ ceeenn(23).
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The quantities on the right are now all known and we shall
write

p+p=0 ... (24).
Now sin p = f sin({—v) ... (25),
and sin p, = %’ sin(ly—v) e (26).

By means of (24), the equation (26) can be written
sin 8 cos p = cos @sin p + %‘ sin ({; — v,),

or, using (25),

sin 0 cos p = gcos fsin ({ - v) + %sin (& —v) (27).
Dividing (25) by (27), we eliminate r and obtain

psin@sin ({ — v)
pcos fsin ({ — v) + pysin (§; — vy)
All the quantities on the right of (28) are known and this
equation thus determines p.

We now write (25) in the form

sin p = (5) (%) sin Pysin({ —v) ... (29),

in which p, p/a, 7,/r, { — v are all presumed to be known. We
thus determine from (29) the mean equatorial horizontal
parallax P, of the moon.

It has been assumed that the observations at O and O, refer
to the moon’s centre. In practice, however, it is the zenith
distance of the moon’s upper or lower limb, or of a small crater
or mountain peak that is measured. The adjustments to the
procedure outlined above are, however, slight and the details
need not be more fully described here. Also it has been assumed
that O and O, are on the same meridian and clearly it is unlikely
that two fixed observatories can be found to satisfy this assump-
tion exactly. The Royal Observatories at Greenwich and the
Cape of Good Hope have collaborated in the past in the in-
vestigation of the moon’s parallax, and as they differinlongitude
by 1t 13m 558, the effect of the change in the moon’s declination
during the interval between the meridian transits at these two
observatories has to be taken into account.

tanp = ...(28).
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The value of the moon’s mean equatorial horizontal parallax
adopted by the IAU and used in the Astronomical Ephemeris is
3422'’-608, and this corresponds to a mean distance of 384400 km.
As a method of determining the moon’s distance with the highest
accuracy, the above considerations are no longer relevant, as
this can now be determined from the measured time lag of radar
and laser echoes from the lunar surface. The first radar echoes
were detected from the moon in 1946, and accurate radar
distances became available about ten years later. The laser
echoes have been made possible by the reflectors set up on the
surface of the moon by the Apollo astronauts.

119. Semi-diameter.

In Fig. 81, let the linear radius of the moon be R miles and
let r, ' denote the distances, in the same unit, of the moon’s
centre from C and O. Let S denote the angle subtended by the
moon’s radius at C and s that subtended at 0. Then we have
sin§ = R/r and sins = R/r’. The first can be written

. R a
sin8 == .-~,
a’'r

where @ is the earth’s equatorial radius. Since afr =sinP, we
have B
sin§ == 2 simP L. (30).

If 8, denotes the angle subtended at C' by the moon’s radius
when the moon is at its mean distance r,, we have

sinSo=§sin r, (31);

S, is called the mean semi-diameter of the moon.
R sinz’
r sinz’

Also sin & = ;1-? =

or sins =sind§ S22 L. (32).
sin z

s can be measured, and as 2’ and z can be assumed to be known,

sin S sin P

sin §, sin P,

and assuming P, and P known we determine S,. By (30) or (31)

the moon’s radius R is derived; it is found to be 1738 kms or

equation (32) determines S. From (30) and (31)
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1080 miles. Thus the moon’s radius is about one-quarter that of
the earth. The value of S;is 15’ 32""-6. The semi-diameters of the
sun and planets are defined in a similar manner.

120. Parallax in right ascension and declination.

We now investigate the effect of parallax on the right
ascension and declination of the moon with respect to an observer
at 0. We shall develop rigorous formulae which are only necessary
in the case of the moon and artificial satellites, for which P can
be very large indeed. For the sun and otber bodies in the solar
system the parallax is a small angle, and consequently the
general formulae can be greatly modified and simplified in this
case.

Fig. 83.

Consider, in Fig. 83, the celestial sphere centred at C (the
earth’s centre); P is the north pole, Z’ is the observer’s geo-
centric zenith and PZ’' = 90° — ¢’. Let M be the position of the
body on the celestial sphere as viewed from C; then Z'M = 2.
Produce the great circle arc Z'M to M’ so that Z'M' =2/,
z’ being the zenith distance of M with respect to the observer
at 0. Then, since 2’ =2+ p, we have MM = p, the angle
of parallax corresponding to the observation made at 0. Let
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«, 8 be the right ascension and declination of the point M on the
celestial sphere and o', 8’ the corresponding co-ordinates of M’.
Then PM = 90° — 3; PM' = 90° — §'. Let the hour angles of
M and M’ be H and H' respectively. Weshallwrite H' — H=AH.
Now, from the figure, H — H = m'm, and if 7 is the vernal
equinox ¢’ = P’m’ and a = Tm so that, if we write ¢’ — a = Aq,
then Ae = — m’m and therefore AH = — Aa. Let 4, denote the
angle PZ'M.

We shall now investigate the problem of expressing the
co-ordinates o’ (or H') and & in terms of a (or H) and 8.

From the triangle PZ'M we have, using formula D,

sin ¢’ cos 4, = cos ¢’ cot z — sin 4, cot 11 ...... (33),
and from the triangle PZ'M’,
sin ¢’ cos 4, = cos $'cotz’ — sin 4, cot fI"...... (34).

Subtracting (33) from (34), we obtain
cos ¢’ (cot z — cot 2") = sin 4, (cot H — cot H'),
or,since 2’ —z=p, and H — H = AH,

cosd'sinp sin 4, sin A
sinzsinz  sinHdsinll’ °

But by (18), sinp = ’;sin 2" and, by the sine-formula B,

sin A4, sin z = sin A cos 8.

R P , _ cosdsin All
Hence OS¢ = Ga T+ aH)

from which we obtain

tan Al = — tan Aq = f; sin I cos &

cos & — ‘(—;cos Hecosd’

(35).
This is a ricorous formula which enables us to calenlate A/{ or
Ac (the effect of parallax on right ascension) when p/r, ¢ and
the geocentric co-ordinates H and § are known. We then obtain
H’ or o'. It is only when pfr is not a small quantity that this
exact formula must be used.

We now find the general formula to give AS, the effect of
parallax on declination (Ad = §" — §).
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By the cosine-formula A, from the triangles PZ’ M and PZ'M’,

sin 8 = sin ¢’ cos z + cos ¢’ sin z cos 4,,

sin 8’ = sin ¢’ cos 2’ + cos ¢’ sin 2z’ cos 4,,
whence, eliminating cos 4,, we obtain

sindsin 2’ — sin 8’ sinz = sin ¢’ sin p
= ’—;sin ¢’ sin 2’ by (18),
which can be written
sind S0 ? _sins—LPsing’ ... (36).
sinz r
Again, by G, we have
cos 8 cos H = cos ¢’ cosz — sin ¢’ sinzcos 4,
cos 8’ cos H' = cos ¢’ cosz’ — sin ¢’ sin 2" cos 4,,

and, by eliminating cos 4, from these equations and using (18),

cos & cos H sinz’ — cos &' cos H'sinz = p; cos ¢’ sin 2’,

sin 2
whence  cos®’ cos H' ———, = cos 8 cos H — £ cos ¢ ninns (37).
sin z r

Dividing (36) by (37), we have
. P o 4
tan &' smS——rsqu

cos H' ™ P ’
cosdcos H —  €0s ¢’

Writing 8’ = 8 + Ad and 7' = tan AS, we obtain

tan s 4 T cos H’ <sin8— gsimﬁ’)

1-Ttan? cosScosH—f;COSqS’

cos H’ occurs on the right of (38), and since H' = H + AH and
AH is given by (35), we can then calculate 7 from (38). We thus
obtain A3 or & — 3, and hence &' is deduced.

121. Parallax in zenith distance and azimuth.

We now consider briefly the effect of parallax on the zenith
distance and azimuth of the moon or the sun when the body
concerned is not on the meridian. In Fig. 84, let Z and Z’ be the
astronomical and geocentric zeniths of an observer at O, the
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centre of the celestial sphere being the earth’s centre C. As
before, let M and M’ be the positions of the body on the celestial
sphere as viewed from C and O respectively; Z'M =z,
Z'M' =z =z+ p. Now observations of zenith distance and
azimuth are made with reference to the astronomical zenith Z
and so we can regard ZM’ and PZM' as the observed quantitics.
Denote these by { and 4 re-
spectively. Now ZZ' is the
angle of the vertical v, which
we assume to be known, and
Z'4M' =180° — A. Formula
A then enables us to express 2’
in terms of », 4 and {. Also
sin p = (p/r) sin 2, from which
p and then z (= 2" — p) may be
derived if p/r is known. Thus
z can be expressed in terms of )
v, {, 4 and p/r. Fig. 84.

Let 4, denote the geocentric azimuth PZ'M. By formula D,
A, can be expressed in terms of », { and 4.

It is clear that if v, 2, A;, p/r are known, { and 4 can be
derived by an analogous process.

The actual formulae giving (z — {) and (4, — 4), which can
be derived from the procedure outlined above, are not of very
great practical importance, and it is sufficient here to draw
attention to the principles involved.

122. The solar parallaz.

The method which we have described for the determination
of the moon’s parallax cannot be applied with sufficient accuracy
to the direct measurement of the sun’s parallax. The principle
of the traditional method of deriving the sun’s distance is
based on the measurement of the distance of an exterior planet,
such as Mars or Eros, and on the application of Kepler’s third
law. If a (semi-major axis), 7 (orbital period) and m (mass)
refer to the earth then, by formula (18), p. 102, M denoting the
sun’s mass,

4r%a®

Tg - G(‘M'*' m)»
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and if a,, 7',, m, refer to Mars or Eros,

4:72¢q,3
S = G (M 4 my).
1
We can safely neglect m and m, in comparison with M and con-
sequently we have a®:a’ = T2: T2

Now the periods of orbital revolution are known very accurately;
consequently the ratio a : a, can be determined very accurately.
This can be expressed more generally by the statement that the
relative dimensions of the planetary orbits are known with high
precision. If the distance (say, in miles) of a planet from the
earth can be accurately measured at a particular time, the scale
of the planetary system can then be deduced; in particular, the
sun’s distance from the earth can then be found in miles or in
terms of the earth’s equatorial radius as the unit.

Consider the earth’s orbit and the highly elliptical orbit of the
minor planet Eros (Fig. 85). If the earth and Eros are simul-
taneously at E and M respectively
(the planet is then in opposition), it M
is clear that conditions are favour-
able for measuring the distance EJM,
for then the planets are at their
minimum distance apart. The op-
position shown by the configuration
SE M, is evidently the most un-
satisfactory. At the most favourable
opposition, when Eros makes its
closest approach to the earth, the
distance between the two bodies is
about 14 million miles, a very much I,
smaller distance to be measured
than the distance of the earth from
the sun, which is about 93 million miles. A favourable oppor-
tunity of measuring the distance of Eros occurred in 1900-1 and
in 1930-1 the circumstances were again favourable.

In section 120, we obtained general formulae for the effect of
parallax on the co-ordinates of a heavenly body. It was only
necessary to use such rigorous formulae in connection with the
moon because, as we have seen, the mean horizontal parallax

Fig. 85.
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is about 57'. For a planet such as Eros the value of the hori-
zontal parallax may be no more than about 30"; it follows that
for such an object p/r is a very small quantity (it is of the order
of 0-0002), and therefore we can safely neglect squares and
higher powers of p/r in the formulae mentioned. In this way, we

can reduce (35), for example, to the form

Ao = — ﬁ; sin H cos ¢’ sec 3.

We shall now derive this formula for Ae and the corresponding
one for A3 by another method. In Fig. 86 let M be the position
of the planet on the celestial
sphere as viewed from the
earth’s centre ¢ and M’ the
position as seen by an observer
at O whose geocentric zenith is
Z'. Let p denote the displace-
ment MM’ due to parallax.
Let a, 8§ and o', 8’ be the equa-
torial co-ordinates of M and M’
respectively, and H, H' the
corresponding hour angles. Let
M Lbe a small circle arc parallel
to the equator. Denote PI'Z by 7. Then as p is very small
we have, from the sensibly plane triangle LM M,

LM = psiny and LM' = pcosq.
Now from (18) we have, writing p for sin p,

Fig. 86.

p= ﬁr’sin 2 (39).
Put A = H' — H and A8 = § — 8.
We have then

LM = (II' — H)cos 8§ = AH cos 3.

Hence Al cosé = ; sin n sinz’.

But by B, sin 7 sin 2’ = cos ¢’ sin H’,

1Tence AH = -g sin H' cos¢’'secd ... (40).
We can write H for H' on the right of (40) without sensible loss
of accuracy and, since ¢’ — a =Ae = — (H' — H) = — AH, we
obtain P

a'—aEAu:——rCOqu'sechinH ...... (41).
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Again, M'L = 8 — 8’ = — A3, and therefore

Ad = — pcosy,
so that by (39), AS = — g_sin z' cosn,
and, by applying formula G, we obtain
AS = — ﬁ; (sin ¢’ cos 8’ — cos ¢’ sin §" cos H').

Replacing &', H' by 8 and H on the right of this equation we have
8 —~0=Ad= —é(sing&’cosS— cos ¢’ sin 8 cos H)

which gives the displacement in declination due to parallax.

As in the case of the moon, the observation of the planet’s
zenith distance at two widely separated observatories on the
same (or nearly the same) meridian will lead to the determina-
tion of p/r. Thus the distance r of the planet can be found at the
time of observation and, the scale of the planetary system being
now known, the mean distance of the earth from the sun can be
deduced. The base-line in this instance is the straight line joining
the two observatories.

123. The solar parallax (diurnal method).

We now describe an alternative method called the diurnal
method. The principle is as follows. The planet is observed
several hours before meridian passage and again several hours
after meridian passage, at the same observatory. In the interval
between observations the observer’s position, with reference to
the earth’s centre and the planet, has been changed owing to the
rotation of the earth, and the distance between the two positions
constitutes essentially the base-line appropriate for the measure-
ment of the planet’s parallax,

Consider now a star whose position in the sky is near that
of the planet. The parallax observations consist, in effect, of
measuring the difference between the apparent right ascension
o’ of the planet and the right ascension a, of the star, or the
corresponding difference in declination. For simplicity we shall
consider the former only. This difference in right ascension can
be measured by means of the meridian circle or filar micrometer
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or, more accurately, by making a photograph of the region of
the sky in which the planet is situated. The distance between
the image of the planet and the image of a neighbouring star
can be accurately determined and, by the principles which we
shall describe in Chapter xi1, the difference o' — @, can be
derived with great precision.

As the planet is in or near opposition when a parallax investi-
gation is undertaken, the planet will be on or near the meridian
at midnight. Our two sets of observations are then made a few
hours before midnight and a few hours after midnight. We shall
refer to these as the evening and morning observations. Con-
sider first an evening observation when the difference m, in right
ascension of the planet and of the star is measured. We have

m =a — a,.
Now the displacement due to parallax is o’ — a, that is,
(" — &) + (ay — a). Hence by (41),

P

m1+a°—a=—-rcos¢’se08sinH,

or if we denote the values of @, 7, 5, H at the time of the evening
observation by e,, 1, 8;, H; we have

my + ag — oy = —;Plcos ¢’ secd sinfl; ...... (43).

During the interval between the evening and morning ob-
servations the true right ascension, declination and distance of
the planet from the earth’s centre are altering; at the time of the
morning observation let these quantities be «,, 8,, r, and let the
planet’s hour angle be H,. Then we shall have an equation
similar to (43); it is

My+ g — Gy = — 7‘% cos ¢’ sec By sin H, ...... (44).

Subtracting (43) from (44) we eliminate the star’s right ascension
@, and obtain
sec 8, sin H, sec §, sin H,)

7y £ )’

mz—m1=(a2—al)-—pcos¢>'{

(g — @) is the increase in the planet’s geocentric right ascension
between the observations due to the relative orbital motions of
the earth and planet. From a series of observations, for example,
meridian observations, this quantity may be deduced. Also we
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may write without loss of accuracy the mean values 8 and r of
8,, 8, and ry, 7, respectively. Hence

p

mz—ml=(a2—a1)——;

cos ¢’ sec § (sin H, — sin H,)

As (m, — m,) is given by the measures and (e, — o), p, ¢, 8, H,
H, are all supposed known, we can determine r by (45). Thus the
scale of the planetary system is found and the value of the solar
parallax deduced.

The methods that we have considered in this and the previous
section require a favourable opposition of the minor planet
Eros to be applied most effectively. A particularly favourable
opposition occurred in 1930-31, and the determination of the
astronomical unit based on the observations made at that time
was generally accepted for many years as the most accurate
determination available. Since 1961, however, greater accuracy
has been achieved by using radar measurements. The under-
lying principle of the method is the same. By using dynamical
theory, in particular Kepler’s third law, the relative dimensions
of all the planetary orbits are known. The absolute scale of the
planetary system is set by the measurement of a single planetary
distance. The distance that can be most accurately measured by
radar is the distance of Venus at inferior conjunction. This
was first attempted in 1959 when very encouraging preliminary
results were obtained. At the next inferior conjunction in 1961
a number of independent determinations of the solar parallax
were made by this radar method. These taken together have
provided a very substantial improvement in the accuracy to
which the astronomical unit is now known. The value of the
solar parallax adopted by the IAU in 1964 is 8"-794.

124. The solar parallax (other metlods).

(a) Transit of Venus. For a description of this method, which
is now entirely of historical interest, see Ball’'s Spherical Astro-
nomy, p. 312.

(b) Gravitational methods. These depend on comparing certain
observed perturbations in the motion of the moon with the
theoretical expressions derived from celestial mechanics, which
involve the semi-major axis a of the earth’s orbit.
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(¢} The constant of aberration. We have seen in Chapter viir
that the constant of aberration « is given by
27a cosec 1"
T (1— ex)t’
Denote the mean equatorial parallax of the sun by P, and the

earth’s equatorial radius by p,. Then sin Py = py/a or, expressing
P, in seconds of arc,

Py= Po gosec 17
a

Hence, combining these two formulae, we obtain

_ 27mp,cosec?l”

cT (1— e2)t

Here p, = 637816 km, ¢ = 299,792km persecond, T’ = 31,558,150
seconds and e = 0-01672. We thus obtain

«Py=180-2¢4 ... (47),
« and P, being both expressed in seconds of arc. The constant of
aberration can be determined from observations as we have
shown in section 109, and therefore the solar parallax P, can be
derived from (47). However, as we noted in that section, a
precise determination of « is extremely difficult to achieve, and
so the method considered here has not yielded the most accurate
results. It is decidedly preferable to determine the astro-
nomical unit by the methods of the previous section and then
derive « by the theoretical considerations of section 110.

(d) Spectroscopic method. The basis of this method depends on
one of the achievements of spectroscopic astronomy, namely, the
measurement* of the velocity of approach, or of recession, of any
star to or from the earth. This velocity (called the radial velocity)
is obtained directly in linear units, for example, as so many
kilometres per second. Consider, for simplicity, a star whose
position is in the ecliptic and assume for a moment that the
earth’s orbit is a circle and that its orbital velocity is constant.
At some definite time during the year the earth’s orbital velocity
is directed towards the star. In general, the star will be moving
relatively to the sun which we may consider to be at rest. Denote
the component of the star’s velocity, directed towards the sun,

* For an account of the spectroscopic principles and methods, see dstronomical
Spectroscopy by A. D. Thackery (Eyre and Spottiswoode, 1961).
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by V. The spectroscopic method determines the star’s velocity
relative to and directed towards the earth. This is V plus the
earth’s orbital velocity. Six months later, the earth’s velocity
is directed away from the star and the spectroscopist then
measures V minus the earth’s orbital velocity. By subtraction
V is eliminated and the earth’s orbital velocity is determined;
it is usually expressed in kilometres per second. The period of
revolution in the earth’s orbit being known, the circumference
in kilometres is then deduced, from which the radius of theearth’s
orbit is finally found in kilometres. Thus the astronomical unit
of distance is determined and from it the solar parallax, We now
consider the general problem.

In Fig. 87, let A and B8 be the longitude and latitude of a
star X. The earth’s orbital velocity, as we have seen on p. 185,
can be resolved into two
parts: (i), 2/p directed to a
point F on the ecliptic, 90°
behind the sun in longitude
(the longitude of F is thus
©® — 90°, where ® is the
sun’s true longitude), and
(ii), eh/p directed to a point
S on the ecliptic, 90° ahead
of the point 4, which is

such that EA is parallel to
the direction of perihelion
as viewed from the sun.
Consider first the velocity
I/p and its component re-
solved in the direction of

Fig. 7.

the star X. This component is z cos XF. Now

FEX =X~ (® —90°), KF=90° and KX = 90°— B.
Hence by the cosine-formula A,
cos XF = cos Bsin (® — A),
and consequently the component of the velocity 4/p in the
direction of the star is

%cosﬁsin (@ —A).
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Consider now the component ek/p of the earth’s velocity
directed towards the point f. The component of eA/p along EX

is % cos Xf. Now the longitude of perihelion is w and therefore

the longitude of f is w+ 90°. Hence the angle fKX is
A — (@ + 90°). Using the cosine-formula we find that
co8 Xf = — cos Bsin (m — A),

and the corresponding component of radial velocity is
- %cos Bsin (w — A).

For any given star this quantity is constant.

If the star is moving towards the sun (which we may regard
as at rest) with velocity V, the velocity of approach of the star
to the earth is

V+gcosﬂsin(@— A)—%cosﬁsin(m—)«).

This is the radial velocity, which we shall denote by — R (the
convention is that a velocity of recession is taken to be positive).

Consider now two radial velocity determinations made several
months apart. We shall then have

—B=V+ zLcosﬁ{sin(cal—/\)— esin (@ — A)}
Z ..(48),
-R,= V—i—z—,cosﬁ{sin(@z——/\)—esin(m—-)\)}

in which @, and ®, are the sun’s true longitudes at the two dates
concerned. Then by subtraction

R,—R, =1~}:cosﬁ{sin (©,— A) — sin (@3 \)} ...(49).

R,— R, is numerically greatest when B =0 and when
®;— A= — (®, — A) = 90° or 270°. It follows that the best con-
ditions for carrying out an investigation of this kind are obtained
when (i) the star observed is in or near the ecliptic, (ii) the two
sets of observations are made at an interval of six months,
(iii) the dates are chosen so that the difference between the
longitudes of the sun and star on either date is 90° or 270°,

2
Now we have h .78
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in which a is the semi-major axis of the earth’s orbit. Hence
from (49),

B, — R = ﬂl?i—aeij% cos B{sin (®; — A) — sin (®; — A)}
In this equation, R, — R, is given by the spectroscopic observa-
tions in kilometres per second, 7' is the orbital period in seconds,
e, ®;, @, and A are known. Hence a is determined in kilometres
and thus the solar parallax is found.

In the past this method gave valuable results, though they
were less accurate than those based on the parallax of Eros, and
so this method has also been superseded by the radar method.

In deriving the value of a in (50) from the radial velocity
measures, we omitted one consideration. Unless the star is on
the meridian at the time of observation, the linear velocity of
the observatory due to the diurnal motion will have a component

in the direction of the star, P

and this component will be ‘

included in the observed

radial velocity. It is clear )

that this effect must first be

removed before formula (50) [
can be applied. Consider

theobserver O on the earth’s E
surface (Fig. 88). Due to
the earth’s rotation he is
moving along OT (tangen-
tial to the parallel of lati-
tude through O) with the

linear velocity 27;p cos ¢ Q

km per second, where p is Fig. 88.

the radius of the earth in kilometres and 7 is the length of the
sidereal day in mean seconds (7 is 86164). Let X denote the
point on the earth’s surface at which the star is vertically
overhead at the time of observation. Let E be the east point of
the horizon. Then CE is parallel to OT. Hence the component
of the observer’s velocity along CX is

—2—7;3 cos ¢ cos A K.
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But if 7 is the hour angle of the star, X PO =H and
XPE = H + 90°. Hence by the cosine-formula A,
cos XE = — cos 8 sin H.

Let R’ denote the radial velocity of the star (positive, when it is
a velocity of recession) due to the diurnal motion: then

R'=+g—Z—pcos¢>COSSSinH ...... (51),

It is seen that R’ is zero when H is Ot or 12h, The maximum
value of R’ is 047 cos ¢ km per second. The value of R’ just
found must be subtracted from the observed radial velocity so
as to eliminate the effect of the diurnal motion.

In formula (50), R, and R, are the radial velocities so corrected.

125. Stellar parallax.

We now describe the fundamental method of determining
stellar distances. Fig. 89 shows the earth’s orbit, which we can
regard as circular; § is the sun
and a is the orbital radius. Let
X denote the position of a star
at a distance d from the sun, and
we shall here assume simply that
the star is stationary with respect
to the sun. On a given date let
the earth be at £ and six months
later at E,. The distance EFE,
constitutes the base-line—it is
about 300 million kilometres—by
means of which the star’s distance
from the sun can eventually be
determined.

Let EY be parallel to SX and ‘
denote the angles SEY, SEX by Fig. 89.

6, 6, respectively. From the triangle SXE, in which SXE=0— 6,
we have

sin (6 — 61)=Zsin 8, veeen(52).
Define 11 by sin I = g ...... (53).
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Then II is called the star’s parallax (it is sometimes referred to
as the annual parallazx). It is the angle subtended at the star by
the radius of the earth’s orbit. For the nearest star, IT is 0”76
and it is evident that we can write (52) with the help of (53) in
the simple and sufficiently accurate form
6—-6,=IIsin0 ... (54),

in which (8 — 6,) and IT are expressed in the same unit and ¢ is
written for 8,.

In Fig. 89, SX is the direction of the star as seen from the sun
and EX is the direction as seen from the earth on the date in
question; we refer to these as the heliocentric and geocentric
directions respectively. If the star were at an infinite distance
it would be seen from the earth in the direction E Y, which has
been drawn parallel to SX. The angle 8 is the angle between the
heliocentric direction EY and the direction ES of the sun from
the earth. Fig. 89 shows that the geocentric direction EX is
displaced from the heliocentric direction E Y fowards the direction
ES of the sun, and that this displacement takes place in the
plane ESX.

Consider now Fig. 90, which represents the celestial sphere
centred at E. Let X denote the position of the star corresponding
to its heliocentric direction. S is the sun’s position on the

Fig. 90.
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ecliptic at the date concerned. If X is the star’s position on the
celestial sphere corresponding to its geocentric direction, then
X, isin the plane of X, E and S and therefore X, is on the great
circle arc X.S. Moreover X, is between X and S. We shall refer
to X and X, as the heliocentric and geocentric positions of the
star respectively.

126. Effect of parallax on the star’s longitude and latitude.

Let A and B denote the star’s heliocentric longitude and lati-
tude (these quantities refer to the position X), and let A, and 8,
denote the geocentric longitude and latitude (these refer to X,).
Draw the small circle arc UX parallel to the ecliptic. Denote
Ay — A by AX and B, — 8 by AB. Denote the angle UX X, by ¢.
Then in the infinitesimal plane triangle UXX,,

UX =AAcos = XX, cos¢,
and UX,=— A8 =XXsing.
Now with the notation of Fig. 89, XX, =6 — 6, and X8 = 6.
Hence using (54),

Alcos B=IIsinfcosd ... (65),
and AB =—1IIsinfsingd ... (56).
In the triangle K XS, XKS = o — A, where ® is the sun’s true
longitude 7S; also KS=90°, KX=90°— 8 and K&S=90°+ é.
Hence by the sine-formula B,
sin § cos ¢ = sin (® — A),
and by G, sin 6 sin ¢ = + sin B cos (® — A).
The formulae (55) and (56) now become
McosB=IIsin(e—2) ... (57),
AB = —[Isin Bcos(® - A) ...... (58).
These equations give the displacements of the star’s position,
due to parallax, in longitude and latitude.

127. The parallactic ellipse.

Let z denote the displacement UX parallel to the ecliptic and
y the displacement UX, in latitude. Then by (57) and (58),

z = IIsin(® — A),
y = Ilsin Scos (@ — A),
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whence, eliminating @, we derive

xZ y2

I Esin? B
the equation of an ellipse, known as the parallactic ellipse. This
curve is the locus of the geocentric position X; throughout the
year. The major axis is parallel to the ecliptic and the minor axis
perpendicular to the ecliptic. Whatever the star observed, the
semi-major axis is independent of the star’s latitude and is equal
to II. For a star on the ecliptic the semi-minor axis vanishes and
the parallactic displacement takes place wholly in the ecliptic.

=1 veree (59),

128. Theeffect of stellar parallax on right ascension and declination.

In Fig. 91 let A, D be the right ascension and declination of
the sun S. Let a, 8 be the right ascension and declination of X
and a,, 8, the corresponding quantities for X;. Denote ¢, — a

Fig. 91.

by Aa and 8, — 3 by A3. Let UX be the parallel of declination
through X. Denote U 2x 1 by . Then in the small plane triangle
vax, UX =Aacosd = XX, cos,

UX,=— A8 =XX,siny.
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As before X8 = 0 and XX, = 6 — 6. Thus, using (54),
Agcosd=IIsinfcosy ... (60),
A3 = — [Isinfsing ... (61).
Now in the spherical triangle PXS, PX = 90° — §, PS = 90° — D,
XPS=A— o, X8=0and PXS = 90°+ 4.
By formulae B and G,
sin 6 cos ¢ = cos D sin (4 — ) ...(62)
— sin @ sin ¢ = sin D cos 8 — cos Dsind cos (4 — a) ...(63)
Now from the triangle TST, in which T'S = ®, ST'T = ¢ (the
obliquity of the ecliptic), TT' = 4, 778 = 90° and TS = D,
we have, by A, B and C successively,

b

cos ® =cos Dcos 4
sin ®sine=sinD  } ... (61).
8in ® cose = cos Dsin 4
Hence from (60), (62) and (64) we have
Aacosd =TIl (cosacosesin @ — sin ¢ cos ®) ...(63).
Similarly, from (61), (63) and (64) we obtain
A8 =11 (cos 8 sin e sin ® — cosasin d cos ® — sinasin § cos e sin @)

Formulae (65) and (66) may be modified as follows. Consider
rectangular equatorial axes ET, EB and EP in Fig. 91, where
TBis 90°. Let X, Y and Z denote the co-ordinates of the sun,
expressed in terms of the radius of the earth’s orbit (which we
have assumed to be circular) as the unit of distance. Then

X =cos?S, Y =cosBS, Z=cosPS,

or X=cos®, Y =sin®cose, Z=sin@sine.
Making the substitutions in (65) and (66) we have
Aacos8=I (Y cose— Xsine) ..., (65 a),
and A8 =1I1(Zcosd — X cosasind — ¥ sin asin §)
...... (66 a)

The values of X, Y and Z are tabulated in the almanacs for
every day in the year and thus the coefficients of II in (65 a)
and (66 a) can be readily calculated.

The formulae (65) and (66) or (65 a) and (66 a) give the dis-
placements, due to parallax, in right ascension and declination.
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128. The measurement of stellar parallaz.

We shall consider only the application of formula (65). We
write it in the form

Azcosd = (g —a)cos§=FII ... (67),
where F=cosacosesin® —sinacos ®  ...... (68),
or F=Ycosa— Xsina ... (68 a).

F is called the parallax factor in right ascension and its value for
any given star varies with the sun’s true longitude. As we have
seen, its value can be readily calculated.

Suppose there is a faint star B, presumably at a very great
distance, near the star A whose distance is to be measured. Let
@, be the right ascension of B. Suppose on a given date the
difference between the geocentric right ascension «, of 4 and the
right ascension a, of B is measured. Let m; = @, — a,. Then
m, = (a; — @)+ (@ — a,), where a is the heliocentric right ascension
of A. If Bbe regarded as at an infinite distance, e, will be simply
the heliocentric right ascension of B and the quantity (¢ — )
will remain constant throughout the year. Using (67), we have

m; = (g, — a) + (a — @) = F,IIsecd + (a —~ ) ...(69),
where F, is the parallax factor at the date in question. Suppose
the observation is repeated some months later. We shall then
have my= Fyllsecd + (@ — a))  «en... (70),
and by eliminating (@ — &) between (69) and (70) we obtain

my — my = (Fy — F,) Il sec &

and hence = Q"%’:ﬁl}i o83 ..
If there is an error e in the measured quantity (m, — m,), the
parallax IT will be determined with an error e cos 8/(F, — F}).
The error in II will then be least when F, — F, is greatest. This
condition leads us to the consideration of the most favourable
circumstances under which parallax determinations can be
carried out.

Let cosacose=gcosk ... (72),
and sin @ =gsinh ... (73).
Then we can write F from (68) in the form

F = gsin (® — &) venena(74).
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Clearly the greatest numerical value of F is g and this occurs
when ® — & = 90° or 270°. Now by (72) and (73),
g? = cos® e cos?e + sin?q,
or g = (1—sin?e cos? )},
a formula which gives the maximum numerical value of F. Also

h is given by tan h = tan a sec e,

so that, for the maximum value of F, the sun’s longitude is
given by o _ tan-1 (tan a sec ¢) + 90° (or 270°).

Thus the dates can be calculated when the parallax factor attains
its greatest numerical value. If the interval between the two
dates is six months, then F; = — F, and the parallax is given by

(my — my) cos §
- 2F, :

The practical method for the measurement of stellar parallax
consists in taking photographs, at or near the most favourable
dates determined by consideration of the parallax factor, of the
region of the sky in which the star whose distance is to be
measured (called the “parallax star”) is situated. Several faint
stars are chosen as “comparison stars’’ and the measurement of
a plate leads, in effect, to the determination of quantities
(¢ — @), which we have denoted by m,, for the several com-
parison stars concerned. In the same way, a plate taken about
six months later will enable the quantities (e, — ) or m, to be
derived. The general formula (71) is then applied. We shall
discuss the details of the photographic method more fully in
Chapter x11. As a rule about a score of plates, each with three
or four distinct exposures, taken at the appropriate epochs are
necessary for a reliable determination of the parallax of a single
star. The parallax of the nearest star, Proxima Centauri, is 076
and with modern instruments parallaxes as small as 0’"-005 can
be measured with fair accuracy.

=

130. The parsec and light-year.

The distance corresponding to a parallaxof 1" is called a parsec.
If d is this distance, sin 1"’ = a/d, and as @ =1-496 x 108 km and
sin 1" = 1/206265, the parsec is thus equivalent to 206265 astro-
nomical units or 1496 x 108 x 206265 km or 3-086 x 103 km.
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A star whose parallax is 0”010 is at a distance of 100 parsecs
and generally, if the parallax is n/1000 seconds of arc, the corre-
sponding distance is 1000/n parsecs. In popular books on
astronomy, the light-year is generally adopted as the unit of
stellar distance—it is the distance traversed by light in one year.
From the known value of the velocity of light, it is easily found
that 1 light-year = 9-46 x 102 km. Thus 1 parsec = 3-26 light-
years.

EXERCISES

1. If a and b are the equatorial and polar radii of the earth (assumed
spheroidal), show that the greatest value of the angle of the vertical is

a? — bz
_yaf—0°
tan oab "
2. Show that, if two bodies have declinations and hour angles 8, H and
— 3, H, respectively, and equal horizontal parallaxes, their parallaxes in right
ascension are equal.

[Ball.}

8. Show that the parallax in declination of a planet observed from a place in
latitude ¢ vanishes if tan ¢ — tan 8 cos H,

8 and H being the planet’s declination and hour angle, respectively,and the earth
being assumed spherical.

4. Show that, if the horizontal parallax P of a body is small so that sin? P
may be neglected, the apparent daily path of the body as seen from a place in
latitude ¢ is a small circle of radius 90° — § + P sin ¢ cos §, described about a
point depressed P cos ¢ sin 8 below the pole.

5. Assuming the sun’s horizontal parallax to be 8/-80, show that the time
during which the sun is below the horizon at either pole is increased owing to
parallax by an amount equal to 7 cosec e minutes, € being the obliquity of the
ecliptic. {M.T. 1903.]

6. Assuming the earth to be spherical, show that parallax increases the
apparent semi-diameter of the moon in the ratio sin 2’ : sin (2’ — ¢), where 2’ is
the apparent zenith distance of the moon’s centre and ¢ is the angle subtended
at the moon by the observer and the earth’s centre. [Ball.]

7. The apparent position of a point § (a, 8) on the celestial sphere is dis-
placed a small distance 88" along the great circle towards a point @ (a4, 8,) 80
that 88’ = k sin 8@, k being small. Show that the increments in R.a. and do-

clination are Aa = ksin (g — a) cos §; sec 3,

A8 = k {cos 8 8in 5, — sin & cos 8, cos (ay — a)}.
Apply these to obtain formulae for the changes in the co-ordinates of a
star due to parallax and aberration, [&.T. 1929.]
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8. Prove that the cosine of the angle between the directions in which a star
is displaced on the celestial sphere by annual aberration and by annual parallax

18 8in 2 (® — A)cos? B[4 sin? B + cos? Bsin®2(® — A)]-4,

where 8, A, ® sare the latitude and longitude of the star and the longitude of
the sun, respectively. [Coll. Exam.}

9. The satellite Phobos revolves in the plane of the equator of Mars in a
period of 7h 40m, the radius of its orbit being 2-79 times the radius of Mars.
The rotation period of Mars is 245 40, Show that allowing for parallax the
time between rising and setting of Phobos at stations on the equator is 4* 16,
and that Phobos is never seen from latitudes above 69°, [M.T. 1925.]

10. Show that if a planet be observed from a place P on the earth’s surface,
and from O, the centre of the earth, its angular radii S and S’ will be related by
the formula in (8 —
sin 8’ = inﬁ———y-) sin 8,

sin (3 - y)
where y is defined by the relation
tany = cos } (o’ — a) tan¢’sec {# — } (a + ')},
where ¢’ is the geocentric latitude of the place, § the sidereal time of the
observation, o’ and §’ the planet’s right ascension and declination as seen from
P, and a and 3§ its corresponding co-ordinates as seen from O. [Ball]

11. If Z be the zenith, C, and C, two planets, O the middle point of C,C,,
D the true distance C,C,, and D’ the apparent distance, show that
D' — D= (cos ZR, where R is a point on the arc C,(,, such that OR = y,
where @ cos y = (P; + Py)sin D and @siny = (P, — P;)cos 3D, P, and P,
being the horizontal parallaxes of the two planets. [M.T.1928.]

12. A star is observed at longitude A, latitude . Owing to annual parallax
its longitude is observed to change through 0”-5. What is the maximum
change in its latitude, and at what times of the year do the maxima and minima
of latitude and longitude occur? What is its distance? [M.T. 1920.]

13. If a, 8§ be the right ascension and declination of a star with annual
parallax It; p and D the position angle and distance of an adjacent star with
pegligible parallax; and if p, 8, A, u be auxiliary quantities defined by the
equations

pcos 8 =sin &, Acosp = cos 8’ sin (a’ — a),

psin § = cos 8’ cos (o’ — a), Asinu = pcos(8+3),
where (o, 8’) are the sun’s co-ordinates, show that the parallax corrections
necessary to be applied to the observed position angle and distance, in order to

obtain their keliocentric values are T1A cos ( p + u) cosec D and LA sin (p + p),
respectively, if we assume the earth’s orbit to be a circle. [Ball.}



CHAPTER X
PRECESSION AND NUTATION

131. Introductory.

The phenomenon of precession was discovered by Hipparchus
in the second century B.c. By comparing contemporary observa-
tions with observations made about a century and a half earlier,
he was led to the conclusion that the longitudes of the stars
appeared to be increasing at the rate of 36" per annum (the
modern value is about 50"') while, as far as he could detect, their
latitudes showed no definite changes. There are two possible
explanations; either all the stars examined had real and identical
motions in longitude—an improbable hypothesis—or the funda-
mental reference point, the vernal equinox 7 from which
longitudes are measured along the ecliptic, could no longer be
regarded as a fixed point on the ecliptic. Now 7 is defined to be
one of the two points of intersection of the ecliptic and the
equator on the celestial sphere; the observations showed ao
changes in the latitudes of the stars and therefore it was legiti-
mate to conclude that the ecliptic was a fixed plane. According
to the second hypothesis (which was adopted by Hipparchus), it
was necessary to assume that the equator and, in consequence,
the vernal equinox moved in such a way that the longitudes of
the stars increased uniformly by an amount in accordance with
the observations.

In Fig. 92let LT M denote the fixed ecliptic, TTR the celestial
equator at time ¢ and 7'7; R the celestial equator one year later.
In one year the vernal equinox has moved from 7 to 7', and thus
the longitude of a star S has increased from 7’D to 7', D, that is,
by about 50”. The uniform backward movement of 7" along the
ecliptic is called the precession of the equinox. Now Hipparchus
satisfied himself that the obliquity e of the ecliptic had suffered
no appreciable change and it therefore followed that the motion
of the equator must be such that the pole P moved from P to P,
around KX in a small circle, KP or KP, being the obliquity e. As
KP is perpendicular to the great circle joining K and 7°, and
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KP, is perpendicular to the great circle K Ty, the angle PKP, is
equal to the arc 77,. From the known movement of 7 along the
ecliptic it is easily seen that the pole P describes the small circle
of which K is the pole in a period of about 26,000 years.

Fig. 92.

Newton first gave the correct dynamical explanation of pre-
cession. Consider the familiar phenomenon of an ordinary top
(Fig. 93) spinning rapidly about its axis OC inclined at an angle ¢
to the vertical OD, and with
its point O on a rough hori-
zontal table. If (7 is the centre
of gravity of the top, its weight
acting vertically downwards
along GE has a moment about
O which at first sight would
appear to result in increasing
the angle COD (that is, 1) and
in bringing the surface of the
top almost immediately into
contact with the table. But
owing to the rapid rotation
about OC, the motion is very
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much different, for the axis OC is seen to move uniformly around
the vertical, so that any point B on the axis describes a circle
about a point D on the vertical OD, and the axis OC sweeps out
a conical surface. Instead of falling towards the table, the axis
OC is at any moment moving at right angles to the plane con-
taining OC and OD. This motion of the axis is called precession.
Consider now the earth spinning rapidly about its polar axisunder
the forces of attraction exerted by the sun and moon. If the earth
were a sphere, the density of its matter at any point depending
only on the distance from the centre, the direction of the solar and
lunar attraction would pass through the centre and there would
be no cause operating to change the direction of the rotational
axis. But the earth is actually a spheroid, with the equator as
principal plane, and as the sun and moon are not situated in the
equatorial plane—except on two occasions during theirrespective
orbital periods when their declinations are zero—the direction
of the gravitational attractions of the sun and moon do not pass
through the earth’s centre and, accordingly, the attractive forces
have moments about the centre. Consider the sun only. Then
the moment of the solar attraction would appear to have the
effect of making the earth’s equatorial plane move towards the
ecliptic, just as in the case of the top (Fig. 93), the moment of
the top’s weight about the point O would appear to cause the
axis OC to approach the table. The actual dynamical result as
regards the earth is similar to that in the example of the top;
the earth’s axis, at any instant, moves at right angles to the
plane containing the axis and the sun and, accordingly, it has
a conical motion about the direction given by the pole of the
ecliptic; in other words, the pole of the equator will describe a
small circle around the pole of the ecliptic K, as in Fig. 92,
and the vernal equinox 7 moves backward along the ecliptic in
the direction 7'7,. The principal action of the moon on the
direction of the earth’s axis is of a similar nature. The combined
retrograde movement of the equinox 7’ along the ecliptic in the
direction 77T is called the luni-solar precession, about two-thirds
of the effect being due to the moon and the remainder to the sun.
Certain effects of a periodic character are excluded in the
definition of luni-solar precession ; reference will be made to these
later (section 134).
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132. The effect of precession on the right ascension and declina-
tion of a star.

Let b denote the luni-solar precession in one year. Then as we
have seen, the latitude of a star is unaffected, while the longitude
increases at the rate of ¢ or 50" per annum. In Fig. 92 let T}
or PKP, represent . If (a, 8) and (a;, 8,) are the co-ordinates of
the star S, referred to the equators TR and T'T, R respectively,
we shall have: PS=90°—8§, P, =90°—3,, KPS=90°+q,
KP.8=90°+a,, KS=90°— B, PRS=90°~ A P, KS=90°—1,,
where B is the star’s latitude and A, A, the longitudes referred to
T and 7, respectively. Also KP = KP, = «.

We shall first investigate the value of 8, — 8. Through P,
draw the small circle arc P,Q perpendicular to PS. We regard
i as a small quantity and so QS is sensibly equal to P, S; hence
@8 = 90° — 3, and PQ = 3, — 8 or, as we shall write it, A5. Now
P, P is perpendicular to KP and as KPQ = 90° + a we have
that PIISQ = @. Hence

A8 =PQ = PP,cose ... (1).
Now PKP, =TT, = i and
PP, = PKP,sine=ysine ... ).
Hence, from (1) and (2),
5, —3=A8=ysinecosa ... (3).

This equation gives the yearly change in declination due to the
luni-solar precession .

Consider now the change in right ascension. We shall denote
@, — ¢ by Aa. From the triangle KPS, by the cosine-formula
A, we have

sin B =cosesind —sinecosdsinae  ...... (4)
and from the triangle K P, 8,
sin B = cosesin§; — sinecos §;sine;  ......(5).

In (5) we write 6, = 8 + AS, ¢; = @ + A and expand; keeping
only first order terms in Ae and AS, we shall have

sin 8, = 8in 8 + Ad cos 3,

€08 &; = cos & — Adsin §,

sin ¢; = sina + Aa cos a,
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8o that (5) becomes
sin 8 = cos e (sin 8 + AS cos 3)

— gin € (cos § — Adsin §) (sin ¢ + Aacosa) ...... (6).
Subtracting (4) from (6) and neglecting the term in Aa.A8 we
obtain

sin e cos a cos § Aa = (cos e cos 3 + sin e sin a sin 3) AS.
But from (3), A3 = rsin e cos ..
Hence @ —a=Aa=y (cose+sinesinegtand) ...... (7).

This last equation enables us to compute the yearly change in
right ascension due to the luni-solar precession .

133. The effect of precession on right ascension and declination
(alternative method).

Owing to precession, the spherical triangle defined by the star
and the poles of the equator and ecliptic, that is KPS, is
changed after an interval of one year to the triangle KPS
(Fig. 92). We can thus suppose that the latter triangle is ob-
tained by applying infinitesimal changes AX, Ae and A3 to the
values of A, ¢ and §, which occur in the elements of the triangle
KPS. The elements ¢ and 90° — 8 remain constant. From the
triangle KPS, by formula A,

8in § = cos e sin B + sin e cos Bsin A
whence, by differentiation,

cosdAd =sinecos ScosAAX ... (8).
But by formula B,
cosecosd=cosBcosA .. (9).
Hence, from (8) and (9)
Ad=AAsinecose ... (10).

If AXis the change in A due to luni-solar precession in one year,
AX =4 and we obtain the formula (3) which gives the annual
change in declination.

From (9), by differentiation,

8in ¢ cos 8Ae + cos & sin §AS = cos S sin AAX
and by means of (10) this becomes
sin a cos 8 Ae = AA[cos Bsin A — sin € cos? @ sin 8]...... (1.
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But, by formula C,
cos 8sin A = sin & sin € + cos 8 ¢cos € sin a.
Hence (11) becomes, after a little simplification,
Aa = AX [cos € + sin € 8in a tan 3]

which, on writing ¢ for A}, gives formula (7) of the previous
section,

134. Nutation.

In (11) of the previous section, AA represents the change of the
equinox in longitude in one year, and perhaps it is assumed that
A is constant, to be identified with a value of about 50" per
annum which leads to the revolution of the equinox around the
ecliptic in the period of about 26,000 years. Now, AA would be
constant provided that the declinations of the sun and the moon
remain fixed and had non-zero values for, then the gravita-
tional attraction of each on the spheroidal earth would be
unaltered and the direction of each attraction would not pass
through the earth’s centre; the result would be that each body
would exert a constant couple on the earth.

First consider the changing position of the sun in the ecliptic.
The couple now tending to tilt the earth’s axis is of the variable
form b (1 —cos 2®), where b is a constant partly depending on
the obliquity. By integration, the change of longitude in ¢ years

is of the form at+lsin20 ... (12)

(small terms being omitted), in which ® is the sun’s longitude
and a,, [ are constants whose values are obtained from dynamical
theory. The term a; ¢ indicates a progressive and uniform motion
of 7 along the ecliptic and terms of this character are generally
referred to as secular terms, and in the particular problem under
discussion as precessional terms. Thus a,t represents the part of
the precession in ¢ years due to the sun.

The term [ sin 2@ is periodic in character; it is zero when the
sun’s longitude is 0°, 90°,...360°, If 7, represents the equinox
as defined by the term a,¢ and 7'; the equinox as defined by (12),
it is clear that the distance between 7, and 7’; oscillates between
the values + ! and — I, and that the period of the changes in the
value of 7,7 is six months. The term ! sin 2@ is called a periodic
term.
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In a similar way the corresponding nature of the moon’s orbit

will lead to principal terms of the form
at+msin2¢ ... (13),
where ( denotes the moon’s longitude.

Thus combining the effects of the sun and moon the motion
of the equinox can be described, so far as the preceding argument
is concerned, by the formula (principal terms only)

at+1lsin2@ +msin2¢ ... (14),
where a is written for a, -+ a,.

We have assumed in the foregoing that the plane of the moon’s
orbit is coincident with the ecliptic. Actually the moon’s orbital
plane is inclined at an angle (denoted by ¢) of 5° 09" to the
ecliptic and we have now to examine the effects of thisinclination
on the motion of the equinox 7.

In Fig. 94 let the dotted circle intersecting the ecliptic at N,
and N represent the intersection of the moon’s orbital plane at

— *Moon’s orbital
plane

Fig. 94.

a given time with the celestial sphere. The pole of the moon’s
orbital plane will be at L where the arc KL is the inclination ¢
or 5°09'. If the pole Lis regarded for the moment as a fixed
point on the celestial sphere, the effect of the moon’s attraction
on the spheroidal earth would be to cause the pole P to move
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around L in a small circle PT of radius LP. Firstly, this would
lead to the backward movement of 7" along the ecliptic; secondly,
the angular distance between K and P would not remain con-
stant or, in other words, the obliquity of the ecliptic would be
altered. But from considerations of dynamical theory, as well as
from observation, it is known that the moon’s orbital plane is
not fixed with respect to the ecliptic, but moves in such a way
that the pole L describes a small circle around K (in the direction
of the arrow) in a period of 18-6 years. We infer that so far as
the moon is concerned, the backward movement of the equinox
T along the ecliptic will consist of two parts; one part due to the
action of the moon on the supposition that the pole of its orbit
coincides with K, and the other depending on the position of the
moon’s orbital plane with respect to the ecliptic, that is to say,
on the position of the pole L which can be defined in terms of the
longitude of the node N; or N and the inclination ¢. The second
part will evidently be periodic in character and the principal
terms of the mathematical expression are of the form

bsinQ+e¢sin2Q ... (15),

where Q is the longitude of the moon’s ascending node N and
h and ¢ are constants whose values are obtained from dynamical
theory.

Combining (14) and (15) we have the following expression
(principal terms only) giving the motion of the equinox on the
ecliptic:

at + bsin Q + ¢sin 2Q + Isin 2@ + msin 2 ...... (18).

The first term, at, gives the luni-solar precession in longitude and
the remaining terms—all periodic in character—give the nutation
in longitude. The nutation in longitude is denoted by A¢.

In the statements made in this section only the moreimportant
terms for the nutation in longitude have been mentioned; we
shall refer more fully to these later.

135. Nutation in the obliquity.

We have already indicated in the preceding section that, inas-
much as the pole of the moon’s orbital plane does not coincide
with the pole of the ecliptic, the obliquity will not remain
constant. As the motion of L around K is periodic, the changes
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in the obliquity are also periodic. If Ae denotes the change in
the obliquity, the principal terms are found to be of the form
(we include one term due to the sun):
Ae=bcosQ +¢,c082Q + [, cos2® + mycos 2C ...... (17).
These terms, being periodic, give the nutation in the obliquity.
We now investigate the changes in the right ascension and
declination of a star due only to the change Ae in the obliquity,
the ecliptic being regarded as fixed. In Fig. 95, let P be the pole

P4
€ €pP
K AVaN

M

Fig. 95.

of the equator L PM which allows for luni-solar precession only.
Let P, be the pole of the equator 77U which allows in addition
for the nutation in the obliquity. Finally let the co-ordinates
of a star § referred to these two equators be (a, 8) and (a;, &;).
Then PS8 = 90° -3, P,8=90°—8§,, KP=¢, KP, = ¢+ A¢,
KEPS=90°+a, KP,8=90°+ ¢, PKS=90°— Aand KS = 90°— 8.
From P, draw a small circle arc P, R perpendicular to PS. As
Ae is a small quantity, P,S and RS are sensibly equal and
therefore PR = 8, — 8§ which we shall denote by AS8. Also
PlﬁR = 90° — q. Then
PR = PP, cos P, PR,
or 8 — 8 =A8 = Aesina ... (18).
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From the triangle KPS, by the sine-formula B,

cosacosd=cosdcosB ... (19)
and from the triangle KP, S, similarly,
cosg;cosd; =cosAcos B ... (20).

Write ¢, — ¢ = Ac. Then with sufficient accuracy, keeping only
the first powers of Aa and A3, we have by simple expansion

cos g, = cos ¢ — Aasin a,
cos &; = cos & — Adsin d.
Hence from (20), neglecting the product term in Aa.AS,
cos Acos B =cos acosd — A cos asin 8§ — Ae sin a cos §,
and using (19) we have

Aesinacosd = — Adcosesind ... (21).
But AS is given by (18); hence
Ae=— Aecosatand ... (22).

Formulae (18) and (22) give the changes in the declination and
right ascension of a star due only to the nutation Ae in the
obliguity.

They may also be derived simply as follows. From the triangle
KPS, we have by formula A,

sin § = sin B cos € + cos B sin € sin A.

Regarding A and 8 as constant, as the nutation in obliquity does
not affect these co-ordinates, we obtain by differentiation

cos 8A8 = — Ae (sin Bsin e — cos B cos esin A).
But by C,
— cos & sin @ = sin Bsin € — cos B cos e sin A,
Hence AS = Acsin g,

which is equation (18).
Also by differentiating (19) we obtain
sin ¢ cos §Aa + cos a sin 6A8 = 0,
which is the same as (21) and the resulting formula (22) is
derived as before,
138. Planetary precession.

Up to this point it has been assumed that the ecliptic is a
fixed plane. Let us first examine what is meant by a “fixed
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plane”. Consider the celestial sphere with the sun as centre.
Now if we are given any two points on the sphere, not dia-
metrically opposite, one and only one great circle can be drawn
through them and accordingly we may specify the great circle
in terms of the two points. Let us suppose that the two points
on the sphere are given by two stars which, for simplicity, will
be assumed at an infinite distance. The assumptions made will
dispose of any necessity to consider aberration, parallax and
proper motion. Then we can say that the plane containing the
sun and the two stars is a fixed plane relative to the sun. In this
sense, the ecliptic is not quite a fixed plane.

Consider the ecliptic ATB (Fig. 96) at 1900-0, which we shall
assume to be coincident with a fixed plane as just defined. We
shall thus consider the ecliptic ATB to be a fixed plane of
reference, and we shall refer to it as the “fixed ecliptic”. We

P

Fig. 96.

shall suppose that one year later the ecliptic is NCD, inter-
secting the fixed ecliptic in N. This change in the position of the
ecliptic is produced by the mutual gravitational attraction of the
planets, giving rise to secular variations in the inclination, and
in the longitude of the node N of the earth’s orbital plane, with
reference to the fixed plane of reference. Due to this cause alone,
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the equinox moves in one year from 7 to C; this motion of the
equinox is called planetary precession, which we shall denote by
X'. The value of X' is about 0”:12 per annum. It is evident from
Fig. 96 that the effect of planetary precession is to decrease the
right ascensions of all stars by the same yearly amount, namely
X', without altering their declinations. It is also clear from Fig.
96 that a minute change in the obliquity results which, due to
this cause, decreases at the rate of about 0’'-47 per annum.
Actually it is found that the displacement in ¢ years of the
equinox P—along the equator in the direction ’C—is given
with sufficient accuracy by a formula of the type ct + di? and
that the change in the obliquity is given by a similar expression.
The coefficients in each case are very small.

Consider now the combined effect of the luni-solar and planetary
precessions. In Fig. 96 ATB and RIT are the ecliptic and
equator for 1900-0. One year later the fundamental planes are
NCD and ET,T;. 7T, is the luni-solar precession in one year.
As all the changes in the fundamental planes are small we shall
have, with sufficient accuracy, that 7,7y = 7C. T\T, is the
planetary precession in one year. Join K to ' and K to 7, by
great circle arcs cutting the fixed eclipticin U and W respectively.
Then 77U or T, W is the planetary precession in longitude. Its
value is clearly A’ cose per annum.

We now define general precession. In one year (we are still
excluding nutation), the equinox moves from 7" to T,. Referred
to the fixed ecliptic AT'B and the equinox 7, the longitude of
T, can be written 360° — p, where p is clearly a small quantity .
The quantity p is called the general precession (in longitude).
When we are dealing with the positions of the fundamental
planes separated by a short interval—a few years, say—the
general precession can be represented geometrically with
high accuracy. We shall consider the interval of one year
for which Fig. 96 has already been used. Then the general
precession in longitude is TW, that is 7P, — WV, or the
luni-solar precession minus the planetary precession in longi-
tude.

As we have seen, planetary precession produces a slight
change in the obliquity.

We now give the numerical expressions for the general
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precession p and the obliquity at a time ¢ years after 1900; the

first is p = 50"-2564 + 0"-000222¢ per annum,
and the second is
€= 23°27'8"-26 — 0'-4685¢.

137. The mean equator and the mean co-ordinates of a star.

In Fig. 96, ATB and RTT are respectively the ecliptic and
equator at the beginning of 1900 (this is usually written 1900-0);
these are regarded as fixed planes of reference. After one year
the luni-solar and planetary precessions produce changes in the
ecliptic and equator so that for 1901-0 these planes are now
N?,D and ET,F. NT,D and ET,F are defined to be the mean
ecliptic and mean equator for 1901-0. Also the equinox 7 is the
mean equinoz for 1901-0,

In this chapter we shall omit the general consideration of the
proper motion of a star and we shall now define provisionally the
mean position of a star. The mean position of a star at any time
is its position on the celestial sphere centred at the sun, and
referred to the mean equator and equinox at that time. In
practice we consider only the mean position with reference to
the equinox at the beginning of a year. It is to be noted that in
our definition no cognisance is taken of nutation, aberration,
annual parallax and (provisionally) of the star’s proper motion.

We now investigate the problem: to derive the mean position
of a star for 1901-0, given the mean position for 1900-0. Let
(e, 8) be the co-ordinates referred to the mean equator and
equinox for 1900-0, and («,, 8,) referred to the mean equator and
equinox for 1901:0. Due to luni-solar precession, the star’s
longitude has increased in one year by ¢. Formulae (7) and (3)
are immediately applicable to give the changes in right ascension
and declination due to this cause. We have, rewriting these
formulae,

a; — a = Y(cose + sinesin atand) eeeen(23),

8, — 8 =ysinecose ... (24).
But planetary precession decreases the right ascension in one
year by A’ (Y,Y; in Fig. 96); hence the complete expression for
o —ais o, — ¢ = (cose — X') + Ysinesinatand  ...(25).
The declination is unaltered by planetary precession, and hence
(24) is the complete equation for the change in declination.
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Put m=cose —A'; m=ysine ... (26).
Then oy —a=m-+nsinatand ... (27),
& —8=mcosax ... (28).

The quantities m and n are functions of the precessional con-
stants and of the obliquity, all of which vary slowly with the
time; consequently m and » vary slowly with the time.

The following table* gives the values of m and n at several
epochs (as n occurs in both formulae (27) and (28), it is tabulated
both in time and angular measures).

Table: values of m and n.

m n n
1800 3807048 15-33703 207-0554
1850 3807141 1s-33674 200511
1900 3507234 15-33646 207-0468
1950 3807327 1.:33617 20-0426

Taking the year as the unit and writing %‘; and ?{f for the rates

of change of the co-ordinates @ and & due to precession, we
rewrite (27) and (28):

%‘: =m+ nsinetand oeeeen(29),
¥ _ noosa 30
Z=meose L (30)

Ezxample. To calculate the mean right ascension of a Orionis
for the epoch 1902-0, given that for 1900-0 the mean co-ordinates
are: @ = 5 49m 458481, § = + 7° 23" 18741,

We first compute the annual precession given by formula (29),
From the table above, for 1900-0,
m = 380723, n = 18-3365.
log n = 0-12597
log sin & = 1-99956
log tan § = 1-11284

1-23837
Hence 7 sin ¢ tan § = 081731
Also m = 380723
Therefore %l: = 38-2454

* Newcomb: Spherical Asironomy, p. 408.
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The annual precession in right ascension for this star is thus
+ 38-2454, and in two years the change in the right ascension
due to precession is + 6%-491. Hence the mean right ascension
referred to the mean equinox of 1902-0 is obtained by adding
65491 to the mean right ascension for 1900-0, and the result is:

Mean right ascension {1902-0) = 5h 49m 518.972,

In a similar way, the mean declination for 1902-0 is found to be
+ 7°23"20"-20.

138. The secular variation.

The procedure adopted in the example just given is correct
only when the interval of time concerned is a small number of
years. It is to be noticed that on the right-hand sides of (29) and
(30) the values of « and & are varying quantities as well as m
and n, and this fact must be taken into account when theinterval

of time exceeds, say, 5 to 10 years. The rate of change of da ; per

century is defined to be the secular variation in right ascension.
Now « is a function of ¢ (in years, measured say from 1900-0)
day d?a,
dt and 7z

of Z ; and of §7E > att = 0, that is for 1900-0, then e can be written

and if «,, denote the values of the right ascension,

dao 12 d*aq
a——ao—i—td S e (31)
2
If s denotes the secular variation in right ascension, lfl 7 is the
da, d¥ey, 8
rate of change (per annum) of a , that is, JE —100° Hence
from (31), d st
€ — ay= <dC:° + 200) v (32).
Now, in general,
s _d*a
100 = a5 = jt(m-i-nsmatanb‘)
dm . dn da
= W—I_ s1natan82l—t +ncosatan87ﬁ
+ nsinasec%cﬁ eeeen.(33).

dt
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Now from the values of m it is found that, for 1900-0, the
annual rate of change of m is given by

dm
T = + 08-0000186,
and, similarly, %’; — — 0"-0000853.
Also and % in (33) are given by (29) and (30). Hence the

value of s can be computed.
The formula in declination corresponding to (32) is:
dd, &t

8= ( + 301)

where g, is the secular variation in declination.
In the principal catalogues, quantities called the annual
variation in right ascension and in declination are tabulated for
each star. The annual variation in right ascension, for example,

is the value of Z due to annual precession (for the appropriate

epoch, say 1900-0) together with the effect of proper motion,
which we have hitherto excluded from our discussion. The
secular variations s and s, are also given.

Ezample. To compute the mean co-ordinates of € Octantis for
1950-0, given that the mean co-ordinates (g, §,) for 1900-0 are

22h 8m 49s.30 and — 80° 56" 14""-7
From Boss’s Preliminary General Catalogue, the annual varia-
tions in right ascension and declination for 1900-0 are respectively
+ 689931 and +177-699,
and the secular variations s, s, are
8= — 08-5926 and s = + 0"-468,
Then, by (32), a being the mean right ascension for 1950-0,
@ — ay= 50 (659931 — S0 x 05-5926)
= 50 (689931 — 0s-1481)
= Hm 42825,
Hence the mean right ascension for 1950-0 is
(220 8m 403-30 4 5™ 428-25) or 22h I4m 31855,
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Also by (34),
8 — 8 =50 (177699 + £ x 0'468)
= + 14’ 50"-8.
Hence the mean declination for 1950-0 is
(— 80° 56" 14"'-7 + 14’ 50"'-8) or — 80°41'23"-9,

139. The true equator and the true co-ordinates of a star.

To fix our ideas we shall consider a particular time and date,
say, 1931 March 9, 152 y.T. The true equator, true ecliptic and
the true equinox are the actual equator, ecliptic and equinox
respectively, at this instant, and their respective positions with
reference to a fixed ecliptic, say, at 1900-0 are dependent on the
amount of precession and nutation computed for the interval
between 1900-0 and the instant in question. We define the true
place of a star at this instant as its position on the celestial
sphere, centred at the sun, referred to the true equinox and
equator of the date.

Let us denote the mean co-ordinates of a star for 1900-0 by
(@9, &), the mean co-ordinates for 1931-0 by (a, 8) and the true
co-ordinates for 1931 March 9, 15" Uv.T. by (q,, §,). Also let
7 denote the fraction of the year between the beginning of the
year and the date in question. Then, considering the change in
the right ascension of the star due to precession and nutation,
we have

@, — @y = precession in R.A. for (31 4 +) years

+ the effect of nutation on the r.a.

We write g — ey = (@ — &) + (¢ — a).

Now a; — a = the difference between the true r.a. of the star,
referred to the true equinox of date, and the mean R.A. referred
to the mean equinox of the beginning of the year (1931-0); it is
made up of

(i) precession in R.a. for the interval r,

(i1) the effect of nutation in Rr.A. for the date in question.
Also a — a, i3 the difference of the mean co-ordinates for 1931-0
and 1900-0. We thus have the general rule:

To derive the true co-ordinates of the star at (1931 + ), the
mean co-ordinates for 1900-0 (say) being given, firstly compute
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the mean co-ordinates for 1931-0 (by the procedure illustrated
on p. 241) and, secondly, compute (i) the precession for the
interval =, and (ii) the effect of nutation. Denote by Ag,, A,
the effects on the right ascension due to (i) and (ii) respectively.

Then by formula (27)—which gives the annual change in R.A.

due to precession—we have for the interval r,
Agy = 1 (m + nsin ¢ tan ).

Consider now nutation. As we have seen, nutation changes
the longitude of a star and also the obliquity of the ecliptic. For
the date concerned, let Ay, Ae denote the nutation in longitude
and in the obliquity respectively. Ay consists of the periodic
terms given in (16) and Ae is given by (17). The change in the
right ascension due to Ay is given from (7) by

Ay (cos € + sin e sin a tan 8),
and the change in Rr.a. due to Ae is given from (22) by
— Ae cos a tan 8.

Hence the total change Ag, in right ascension due to nutation is
given by
Aay = Ay (cos € + sin e sin ¢ tan 8) — Ae cos a tan 3,
But a;, — o (the difference between the true r.A. at date and the
mean R.A. for the beginning of the year) is Aa, + Aq,; thus we
can write
o —a=(mr+ Afcose) + sin atan d (n7 + Ay sin ¢)
— Aecosatand ...... (35).

But from (26), m and n are defined in terms of the luni-solar
precession ¢ and the planetary precession A" by

m=1cose -, n=4isine ... (36).
Substituting in (35) the expressions for cos € and sin € given by

(36), we obtain
oy — & = (—r+ %) (m + n sin « tan 3) +%¢- Ae cos a tan &

Suppose now that all the precessional and nutational quan-
tities are expressed in seconds of arc, and that we write

Ay o .o NAY
A=n<7+?>’ B=~Ae E‘T&Z} ...(38).

a ={5(mn + sinatand); b= 5cosatand
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Then o—a=Aa+Bb+E ... (39),
in which the right-hand side is expressed uniformly in seconds
of time,

In (39), the quantities 4, B and E are computed from the
known interval 7, the nutations Ay, Ae corresponding to the date
concerned, and the luni-solar and planetary precessions s and A’;
they are independent of the position of the star. They are known
as the Besselian Day Numbers and are tabulated in the almanacs
for every day in the year.

The quantities a and 6 depend on the values of m and » and
on the co-ordinates of the star; they change slowly with the
time, but over considerable intervals they may be regarded as
constants associated with the particular star concerned.

In a similar way, we have the analogous formula in declina-
tion: . Al,b .

01—8=(-r+?>ncosa+Aesma ...... (40),
in which n and Ae are supposed expressed in seconds of are.

Put '=c¢cosa; b’ =—=slna ... (41).

Then, using the values of 4 and B in (38), we have
3 —3=4a"+By ... (42).

Equations (39) and (42) enable us to calculate the true
co-ordinates (g, 3;) at any date when the mean co-ordinates
(@, 8) at the beginning of the year are given.

The same equations enable the complementary problem to be
solved, namely, the calculation of the mean co-ordinates for the
beginning of the year from the true co-ordinates of date.

It is to be remembered that,in this discussion, we have omitted
the effects of the star’s proper motion on the co-ordinates.

The calculations may also be carried out in another manner.
From (38) and (39), we can write

a,—a=7mA[n+E +{sAsinatand + Bcosatans

In this equation the day numbers 4 and B are expressed in
seconds of arc, while ¥ is in seconds of time. This corresponds to
their tabulation in the almanacs. Also from (41) and (42)

8, —8=Acosa— Bsina ... (44).
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Let f, g, G be defined by

f=fmdn+ E; gsinG=B; gcosG=4 .... (45).
Then ay—a=f+ {gsin (G + a)tand ...... (46),
3 —38= geos(G+ea) ... (47).

In these formulae, ¢ is given in seconds of arc and f in seconds of
time.

The quantities f, ¢ and G are known as Independent Day
Numbers and, like the Besselian Day Numbers, they are tabu-
lated for every day in the almanacs.

140. The apparent place of a star.

We have seen that the true place of a star at any instant is
its position on the celestial sphere, centred at the sun, with
reference to the true equinox and equator at that instant. The
true place is thus independent of the effects of aberration and
annual parallax. The apparent place at any instant of a star or
other heavenly body is defined to be its position on the celestial
sphere, whose centre is the earth’s centre, with reference to the
true equinox and true equator at that instant. We thus have:

Apparent place = true place plus the corrections due to
aberration and annual parallax.

The formulae (25) and (26) of Chapter vIIr give the corrections
to the right ascension and declination of a star, due to aberration,
in the form Oc¢ + Dd and C¢’ + Dd' respectively. The corrections
due to annual parallax are given in equations (65a) and (66a) of
Chapter 1x. With a little manipulation these formulae can be
written in a similar form. As a result we find:

Apparent r.A. = True R.A. + (C+11Y)c + (D - II1X)d
...... (48),
Apparent Dec. = True Dec. + (C + IIY)c' + (D - IIX)d’
...... (49).

141. Reduction from mean place to apparent place (or vice versa).

We shall suppose that (a,, ) are the mean co-ordinates of a
star for some such epoch as 1900-0. It is required to determine
the apparent co-ordinates (o', 8'), for example, at 1931 March 9,
15t .1,

The first step is to compute the mean co-ordinates (o, §) for
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the mean equinox of 1931-0 by the principles of section 138.
Using (39), (42) and (48), (49) we shall have

¢ —a=A4a+Bb+Cc+ Dd+E ... (50),

8 —-8=4d"+Bb'+Cc'+ Dd" ... (51).
These formulae give the differences between the apparent co-
ordinates at the date concerned and the mean co-ordinates for
the beginning of the year. The quantities in capital letters are
the Besselian Day Numbers and the quantities in small letters
are the Besselian star constants. For the highest accuracy, the
latter should be calculated for the year in question, as strictly
they are not constant, but slowly varying, quantities.

We may also carry out the computations by means of (46) and

(47) of section 139 and (27) and (28) of Chapter virI in terms of
the independent day numbers as follows:

o —a= f+ Lgsin (G + a)tand + Lhsin (H + e)secd
8 —-8= gcos (@ + a) + hcos (H + a)sin 8 + 2cos §

The formulae can also be used in deriving the mean co-ordinates
for the beginning of the year when the apparent co-ordinates at
the date are known.

142. Cataloguing the stars.

Let us suppose that a star is observed with the meridian circle
on 1931 March 9 at 15% u.r. After the instrumental and
refraction corrections have been applied, we obtain the apparent
right ascension o’ and the apparent declination &' corresponding
to the true equinox of date. By applying the formulae (50) and
(51)—or (52) and (53)—we obtain the star’s mean co-ordinates
o and 3 referred to the beginning of the year 1931. For the
purposes of a catalogue it is convenient to refer the positions to
the mean equinox of a common epoch, say, 1900-0. The mean
co-ordinates (g, 8,) referred to this common epoch are then
obtained according to the procedure in section 138.

143. The numerical values of the nutation in longitude and in the
obliquity of the ecliptic.

In (16) we have indicated the nature of the principal terms of
the nutation in longitude, Ay—they are the periodic terms in
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(16)—and in (17) the principal terms of the nutation in the
obliquity, Ae. The coefficients b and b, are not quite constant,
varying slowly with the time. If 7' denotes the time interval
expressed in centuries and reckoned from 1900-0 the expressions
(16)—nutation only—and (17) take the following numerical
forms:

A = — (177-233 + 0""-017T)sin Q + 0”-209sin 2Q

—~1273sin2L — 0"-204sin2¢  ...... (54),
Ae = (97210 + 0”-0017") cos Q — 0'"-090 cos 2Q2
+ 07-552c082L + 0"-088cos 2 ...... (55),

in which we have written the sun’s mean longitude L in place
of the sun’s true longitude ®.

In calculating the Besselian Day Numbersand the Independent
Day Numbers, many other terms which are not given in (54)
and (55) are used. The complete expressions for Ay, Ae are given
in the Explanatory Supplement to the Astronomical Ephemeris.

The coefficient of cos Q in (55) for any epoch is called the
constant of nutation.

EXERCISES

1. If P, K are the poles of the equator and ecliptic, and X is a star such that
PXK is 90°, show that X has no precession in right ascension.

2, Make a rough estimate of the present declination and right ascension of
the point of the celestial sphere which was First Point of Aries in 120 B.c., the
date when the precession was discovered. [M.T.1921.]

8. The equatorial co-ordinates of a star on the ecliptic are (a, 8) and its
longitude is A. If Aa, AS and AAX are the annual precession in right ascension,
declination and longitude respectively, prove that

Aa cot acos? 3 = Ad cot & = Adcot A, [Coll. Exam.]

4. At a certain date two stars came simultanecusly tc the horizon of a place
in latitude cot (v 3 sin €) at Ot sidereal time. At a later date, when the preces-
sion had amounted to 60°, show that the same stars came simultaneously to the
horizon of another place, whose latitude was € + cot™ (2 tan ¢), at sidereal
time 61, ¢ being the obliquity of the ecliptic. [M.T. 1929.]

5. Show that a southern star of declination — 8 and right ascension « must
at some epoch have been visible from a station in north latitude ¢, provided that

8in & cos ¢ + cos d 8in € 8in a < cos (¢ — ),
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where ¢ is the obliquity of the ecliptic. Obtain formulae for calculating the
date at which it ceased (or will cease) to be visible. {M.T. 1926.]

6. Show that, owing to precession, the position angle 8 of a non-polar

double star alters at a rate given by %‘t’ = + 1-4 sin a sec 3 sin ¢ degrees per
century.

The approximate position of the double star 22 Cygni is (19® 22™; + 27° 30").
The observed position angles (increasing) for the mean epochs 1830-0 and
1905-0 are respectively 256°-0 and 311°-8. What is the real change in position

angle? [Lond. 1926.]

7. Owing to precession the interval between two consecutive transits of a
star across a given meridian differs from a mean sidereal day. If g + e > 90°,
show that this difference vanishes if the star’s longitude A is given by

8in A = cot B cot ¢,
where 8 is the star’s latitude and « is the obliquity of the ecliptic.

8. The co-ordinates of a star for 19000 are: 16h 56™ 128; § = + §2° 12,
Show that the annual precession in R.a. for 1900-0 is — 6#-30.

9. Prove that the complete transformation from the true place to the
apparent place of a star is as stated in equations (48) and (49).

10. Two stars rise simultaneously at a site of latitude ¢ at local sidereal time
T. Assuming that the proper motions of the two stars are negligible, show that
they will again rise simultaneously after a fraction

}cot‘1 (sinetan gsec? + cosetan?)
kg

of the precessional period. Show further that the local sidereal time of their
rising will then be » — T, [Glas. 1972.]



CHAPTER XI
THE PROPER MOTIONS OF THE STARS

141. Definition of proper motion.

In 1718 it was discovered by Halley that the positions of
certain bright stars had altered appreciably, since the time of
Hipparchus, in relation to the general stellar background.
Suppose for the moment that all stars with the exception of
Arcturus are at an infinite distance from the sun, so that they
form a definite system of fixed reference points. The comparison
of the observations of Arcturus, made in the days of Hipparchus
and of Halley, showed conclusively that this star had moved in
the interval of about twenty centuries through the considerable
angle of about one degree,
with reference to the stars
in its immediate neigh-
bourhood on the celestial
sphere. Thissuggested that
Arcturus had a definite
space-velocity relative to
the sun, and that its dis-
tance was finite.

Consider Fig. 97. Let 8
be the sun and suppose
that a star with a space-
velocity relative to the sun S ,
moves in the course of a (Sun) ¥
yearfrom A to B. Thestar’s
track in space can be as- Fig. 97.
sumed to be a straight line; certainly no observations during so
long an interval as two centuries have suggested that the path
of a single star deviates by a measurable amount from a straight
line. Let u denote the angle ASB. Then u is the angle through
which the star is seen to move in one year; it is called the proper
motion of the star, and is generally measured in seconds of arc
per annum,
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145. Relation between proper motion, tangential wvelocity and
parallaz.,

In Fig. 97 let BC and DA be drawn perpendicularly to S4.
Let d denote the distance SB (in kilometres) of the star from the
sun and & the angle between its direction of motion A8 and the
direction SA. Let V denote the star’s linear velocity from 4 to
B, expressed in kilometres per second, so that, if » is the number
of seconds in one year, we have

AB=2¥V km ... (1).

Let v denote the component of the linear velocity at right angles
to the direction SA (the line of sight); » is called the tangential
velocity or cross-velocity, and it is expressed in kilometres per
second. For the star with the largest proper motion the value
of pis about 10" per annum, and in every instance we can assume

that ASBis a very small angle so that, in Fig. 97, AD and CB

may be taken to be equal; also AD or CB is the distance
described in one year perpendicularly to S4, so that

AD=CB=nv km ... (2).
Now CB =dsiny, so, if u is in seconds of arc, we can write
CB=dusinl” ... (3).

Let IT denote the star’s annual parallax and a the radius of the
earth’s orbit in kilometres; then the distance d and the parallax
11 are related (Chapter 1x) by the formula

sin IT = a/d
or, since II is small, by a
“Tsni” = (4),

where IT is expressed in seconds of arc. Hence from (2), (3) and

(4) we have _pa ;
V=g e (5).

We now insert the values of ¢ and n in (5); @ =149-6 x 108 km

and n = 31-56 x 10 (the number of seconds in a year). Hence

we derive

v=474 I’—; ...... (6),

a relation which gives the cross-velocity v in kilometres per
second when the values of u and Il are known.
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For example, the annual proper motion p of Capella is 0'-439
(the methods of measuring proper motion will be described later)
and its parallax IT is 0'"-075. Inserting these values in (6), we
find that the tangential velocity v is 27-7 km per second.

14€. Radial velocity.

In one year (Fig. 97), the distance of the star has increased
from SA to §B or, with sufficient accuracy, from S4 to SC, that
is, by the distance AC. The rate at which the star’s distance
from the sun is changing owing to its linear velocity in space is
called the radial velocity with respect to the sun. If p denotes
the radial velocity in kilometres per second, we have

AC = np = AB cos 0.
But by (1), AB = nV; hence
p=Vecos8 ... N.

The values of the radial velocity p can be determined for the
brighter stars by spectroscopic methods, directly in terms of
kilometres per second. As in section 124 (d), we accept such
results here without explaining the spectroscopic principles
involved.

When a star is increasing its distance from the sun (as in
Fig. 97), the radial velocity is defined to be positive; when its
distance is diminishing, the radial velocity is negative.

Now BC = 4B sin 8; hence, from (1) and (2),

v=Vsing ... (8).
If v is determined from (6) and p is known from spectroscopic
observations, we then have the two equations (7) and (8), from
which the star’s linear space-velocity V and the angle 8 can be
determined. For Capella, as we have seen, v = 27-7 kms. per
second and p is found to be + 30-2 kms. per second. Hence

V sin 8 = 277 and V cos 8 = 30-2.

By an easy calculation, it is found that ¥V = 41-0 kms. per
second (this is the space-velocity of Capella relative to the sun)
and 6 is 421°.

147, The measurement of proper motion.

Referring again to Fig. 97, we notice that the component of
the star’s linear space-velocity which gives rise to proper motion
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is the tangential velocity in the direction AD or CB; the radial
velocity by itself does not affect the direction in which the star
is seen. Now 4, D and §
are coplanar; hence on the
celestial sphere with the
sun as centre, the star will
appear to move along a
great circle. In Fig. 98 let
8 be the position of the star,
say, at 19300 and T its
position one year later. The
great circle arc 8T is thus
the annual proper motion
p. Let (e, 8) and (e, §,) be
the co-ordinates of § and T'
respectively, referred to the
sameequinox and equator—
say the mean equinox and
equator of 1830-0. Then the differences (¢; — @) and (3; — 8} are
due to the annual proper motion. We shall write:

Fig. 98.

0 — = p,; 8 — &= p; ceeen(9).
Then p, and p; are the components of the proper motion in
right ascension and declination respectively. We shall call y the

total proper motion, which is always expressed in seconds of arc
per annum.

Draw the small circle arc UT parallel to the equator. Then
UT = UPTsinPT; also UT = STsin, where  is the position
angle PST. ¢ is measured from the meridian joining the star to
the north pole P from 0° to 360°, in the direction shown by the
arrow in Fig. 98. But UPT = p,, PT = 90° — &, and ST = p.
Hence [a €OS 8, = p sin ¢
or, writing 8 for 3, since p is small, we have

po=psindsecd ... (10).
As p is supposed to be expressed in seconds of arc per annum,
o is also given by (10) in terms of the same units. Similarly,
SU = 8, — & = ps, so that

pe=pcos¢ L (11,
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ps being expressed in seconds of arc per annum. If p,, p; are
known, the formulae (10) and (11) are sufficient to enable the
values of p and ¢ to be calculated.

The values of pu, and p; for the brighter stars (down to about
the ninth magnitude) can be obtained by meridian observations
separated by a long interval of time. We shall illustrate the
procedure by means of an example. In the A4.G. Catalogue the
mean co-ordinates of Arcturus for 18750 are

14h 9m 57563 + 19° 50’ 276,

These mean co-ordinates are derived from several meridian
observations of the star, which, for simplicity, we shall suppose
to have been made round about the beginning of the year 1875.
After the instrumental and refraction corrections have been
applied, each meridian observation yields the apparent co-
ordinates referred to the true equinox of date; after the applica-
tion of the formulae for precession, nutation and aberration, the
mean co-ordinates for the epoch 1875-0 are obtained. This is
done for each of the observations; when the average is taken for
the several observations, the results, already quoted, are the
mean co-ordinates of the star for the beginning of 1875 referred
to the mean equator of 1875-0.

A similar set of observations round about the beginning of
1925 give the mean co-ordinates of the star at the beginning of
1925 referred to the mean equator of 1925-0. With our assump-
tions the interval between the two sets of observations is
50 years. Now if the star had no proper motion, the mean
co-ordinates for 1925-0 ought to be the mean co-ordinates for
1875-0 plus the amount of precession in the interval. To find the
actual amount of proper motion in right ascension and declina-
tion, we first derive the star’s position at the beginning of 1875
referred to the mean equator of 1925-0. This involves the
application of precession between 1875 and 1925—call this
interval t. From the A.G. Catalogue we extract the following for
Arcturus:

R.A. Dec.
Annual Precession + 28.8132; — 16"-915
[Chapter x: formulae (29), (30)]

Secular variation (s and s,) + 0s-0003; + 07-228
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Using formulae (32) and (34) of Chapter X we have, for ¢ = 50,

st . &t _ ’, .
500 = + 080001 ; 500 = + 0"-057;

which, added to the annual precessions above, give respectively
+ 288133 and — 16”-858. Hence the total changes in the
co-ordinates due to precession are respectively

+ 140%:66;  — 8429,
or + 2m 208-66; — 14’ 2.9,
Applying these to the mean co-ordinates for 1875-0, we obtain

the mean co-ordinates of Arcturus, as observed at the beginning of
1875, referred to the mean equator of 1925:0; the results are

14b 12m 185-29; + 19°35' 59”77 ... (12).
We now consider the second set of observations made at the
beginning of 1925. The mean co-ordinates of Arcturus, as ob-

served in 1925 and referred to the mean equator of 1925-0, are
given as follows:
14b 12m 148.39; 4 19°34'19"-9 ... (13).

The co-ordinates given by (12) and (13) are all referred to the
same co-ordinate system, namely, the mean equator and equinox
of 1925-0. The differences between the two right ascensions and
the two declinations in (12) and (13) are thus due to the proper
motion of the star in 50 years. The R.A. has decreased by 35-90
in 50 years and the declination has decreased by 1’ 39"-8. We

then have fo = — 09-078; s = — 2'-00.

These are the components of the proper motion of Arcturus,
with reference to the mean equator and equinox of 1925-0.

For methods of combining a large number of such determina-
tions and for a discussion of the systematic errors of the various
catalogues, the reader is referred to Newcomb’s Spherical
Astronomy.

For stars fainter than the ninth magnitude the determination
of proper motions is undertaken with the photographic telescope ;
the method is described later in Chapter x11.

148. The components of proper motion at different epochs referred
fo the same equatorial system.

Let S (Fig. 99) denote the mean position of a star in 1850, say,
referred to the mean equator and equinox of 1850-0. To avoid
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confusion, we shall at first express p in circular measure. Owing
to proper motion the star will move along the great circle SAC
at the rate of u radians per
annum. We shall assume
that p is constant. While
changes in p cannot be
ignored, their omission
here will greatly clarify
the actual problem under
consideration. After an
interval of ¢t years let the
star’s position on the celes-
tial sphere be A.

Let us write u,, p; for the
components of proper mo-
tion when the star is at S,
that is, in 1850. Then by

(10) and (11), p, and p, Fig. 99.
being expressed in radians per annum, we have
po=psingsecd; pm=pcosgd ... (14},

the co-ordinates of S being (e, 8) and ¢ the angle PSA.

Let us write p,’, ps’ for the components of proper motion
when the star is at 4, that is, in 1850 + £. Then if (’, ') are the
co-ordinates of 4 (referred to the mean equator of 1850-0) and
¢’ is the angle PAC, we have similarly

po = psing’secd’; w' =pcosd ... (15).
In these formulae we neglect variation of proper motion, for the
effect of which see Exercise 7 below. It is thus clear from
(14) and (15) that the components of proper motion alter with
regard to the epoch for which they are defined, even although
the fundamental plane of reference (the mean equator of 1850-0)
is the same and the total proper motion p is constant.

Through A draw the small circle arc 4B parallel to the
equator. In the triangle PS4, PS = 90° — §, PA = 90° — §,
SPA = o — o, PSA = ¢, PAS = 180° — ¢’ and SA = pt. By
the sine-formula B we have

sin ¢’ cos &’ = sin ¢ cos 8.
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Writing ¢ + A¢ for ¢’ and 8 + A3 for &' we obtain (regarding
Ad, Ad as small angles, for S4 (= ut) is small even for consider-
able intervals of time)

(sin ¢ + Ad cos ¢) (cos & — Ad sin 8) = sin ¢ cos §,
from which, neglecting infinitesimals of the second order, we
have Apcospcosd = ASsindhsind ... (16).
This equation gives the variation of ¢ with 3.

In the infinitesimal triangle S4B, SB=§ — § = A3, and
therefore AS = ptcos ... (17).
Hence from (16) and (17),

Adp=ptsingdptand ... (18).
From (15) we have
, _ p(sind + Ad cos ¢)

He = cos 8 — ASsins
= psec d (sin ¢ + A cos ¢) (1 + A tan§),
or
Mo = psin ¢ secd + uAdcosesecd + pAdsin $ sec d tan §,
again neglecting small quantities of the second order. Hence
using (14), (17) and (18) we obtain
Pa' — pa=2p%tsin ¢ cos ¢ sec & tan §,

and by (14) o — pa=2Up.pstand ... (19).

This equation has been derived on the supposition that g, p.,
p.’ and p; are all expressed in circular measure. Express pq, p.’
in seconds of time and y; in seconds of arc; then (19) is written

ta — Ma=2p,pstandsin1l” ... (20).

In a similar way, we have from (15), the proper motions being
expressed in circular measure,

ps' = p(cos ¢ — Adsin ¢),

or p' = pa=— pAdsing
= — ultsin? tan § [by (18)]
= —tp,2sin S cos 8 [by (14)].

Expressing ., (#s’ — ps) in seconds of time and arc respectively,

weobtain . _ 4 (15u,)?sindcosbsin 1”7 ... (21).
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Equations (20) and (21) thus give the components of proper
motion at the epoch (1850 + ¢) when the components for epoch
1850-0 are known; and vice versa. 1t is only, however, when the
components of proper motion are large that the quantities on
the right of (20) and (21) need be taken into account.

Ezample. The mean co-ordinates of the star Groombridge
1830 for 1900-0 are 111 47m 135.0, + 38° 26’ 10", and the com-
ponents of the proper motion for 1900 are

phe = + 083405, ps = — 5'-801L.

To find the components of proper motion p,’, p;" for this star in
the year 2000, referred to the mean equator of 1900-0.

Apply (20) in which =100, tand = 0-793 and sin 1"’ = 1/206265.
Then B = pa = — 050016,
50 that p,’ is + 08-3389,

Similarly from (21), p;’ = — 5”-801— 0”006 or — 5°'-807.

149. The components of proper motion referred to the mean
equators of two different epochs.

In Fig. 100 let S be the position of a star in 1900-0, referred to
the mean equator and equinox of that year. Owing to luni-solar
precession the pole P will move to @ after ¢ years, describing a
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small circle arc around K, the pole of the ecliptic. The angle PX§
is the luni-solar precession ¢ in f years, the value of ys as we have
seen in Chapter X being about 50”’. As in the previous sectior
we shall at first express ¢y and the proper motions in circulas
measure. We regard PRQ as a small angle, so that the great
circle arc joining P and @ will be indistinguishable from the
small circle arc along which the precessional motion of the pole
takes place. Let (a, 8) be the co-ordinates of S referred to the
mean equator and equinox of 1900-0 and (e, §,) the co-ordinates
of 8 referred to the mean equator and equinox of 1900 + £. Then
PS = 90° — $and QS = 90° — §,. Also KPS = 90° + q, so that
QIA’S = a.

Let the proper motion y of the star be directed along the great
circle 87'. Then if p., ps are the components of proper motion of
S in 1900 referred to the mean equator of 1900-0 we have, by

(10) and (11), Mo = psindsecd; ps=pcos¢ ... (22),
where ¢ is the angle PST'.
Let p,”, ps’’ denote the components of proper motion of the

star, also in 1900, referred to the mean equator and pole @ for

1900 + ¢. Then s =psing;secd;; us' = pcosd; ...... (23),

where ¢, is the angle @ST. We shall write ¢, = ¢ + A¢, so that
PSQ = Aé. Then by formula B we have, from the triangle PQS,
sin A¢ = sin P sin a sec §,,
or, since PQ and A¢ are supposed to be small and P@Q = Jtsine,
Ad = ftsinasecdsine ..., (24),
in which we have written 3 for 8, without sensiblcloss of accuracy.
Draw the small circle arc QR which has S as its pole. With
this construction, PR = §, — 8. Writing A§ for 6, —§, we obtain
from the infinitesimal triangle PQR,
8, — 86 =A8 = Jtcosasine ... (25).
From the first of (23), we have
L BSR4 )
* cos (8 + Ad)
_ p(sing 4 Ad cos )
cos d (1—- Adtan )
= psecd (sin ¢ + A cos ¢) (1 + Ad tan 3),
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or, neglecting small quantities of the second order,
pe'' = psec dsin ¢ + pAS sec & sin ¢ tan 8 + pAd sec 3 cos ¢,
or, using (22), (24) and (25),
B — g =pyitsinesecd (cosatandsing + sinasecdcos¢).
But 1o = p8ingsecd and p; = pcose.
Hence P~ pa = Yitsine(p cosatand + pzsinasec?’) (26).
Similarly, i = p(cosd — Adsing)
= pcos¢d — pytsinesingsecdsing,
so that py’ — py = — Ptp,sinesine. .. (27).

In the derivation of the formulae (26) and (27), pq, py and ¢ are
all supposed to be expressed in circular measure. Express u,,
pe in seconds of time and y,, py and ¢ in seconds of arc, and
these equations become

B — e =Ytsine{p,cosetand + Lu,sinasec?d)sinl”
...... (28),
ps — ps = —15ftu,sinesinesinl” ... (29).

Example. To find the value of u,”” for the motion of the star
Groombridge 1830 in 1900 referred to the mean equator of
1930-0, given that p, = 4 08-3405, p; = — 5'-801 (referred tc
the mean equator for 1900-0). Here ¢ = 30, a = 11k 47m 138,
8 = 38° 26" 10", cos « = — 0-998, sin a = 0-056, tan § = 0-793,
sec?d = 1-63, ¢ = 50, sine = 0-398. Hence, from (28),

pa'’ — pa = — 08-0009,
80 that s’ = + 08-3396.

The computation for the value of us’’ can be performed in a
similar manner by means of (29).

The principal formulae of this and the preceding section
enable us to derive the components of proper motion of a sta:
at any epoch referred to the fundamental co-ordinate system at
that or a different epoch. These formulae need only be applied
when the components of proper motion are very large.

150. Mean and apparent co-ordinates.

In the chapter on precession and nutation we omitted the
consideration of proper motion, and we now revise the funda-
mental definitions, taking proper motion into account. Suppose
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we start with the mean co-ordinates (¢, &) of a star for 1900-0.
The mean co-ordinates (a, 8) for 1900 + ¢ are then given by
applying the precession for ¢ years with the secular variation,
together with the proper motion for ¢ years. The annual pre-
cession plus the annual proper motion is called the annual
variation, and this quantity is generally tabulated in the cata-
logues for each star. The mean r.A. and declination for 1900 + ¢
are then obtained by means of formulae (32) and (34) of Chapter x,
. . day ds,

in which & and i

in right ascension and declination respectively.

The apparent place of a star, say, on 1931 March 9, is its
position on this date on the celestial sphere (with the earth as
centre) and referred to the actual equator and equinox of date,
The apparent place on the date is obtained from the mean place
atthe beginning of the year by applying precession, nutation, aber-
ration (by means of the Besselian or independent day numbers)
and the proper motion for the fraction of the year in question.

are now taken to mean the annual variation

161. The solar motion and parallactic motion.

We have seen that the proper motion of a star is its rate of
change of direction as viewed from the sun. It has been con-
venient to describe the cause of the star’s proper motion as the
star’s linear space-velocity relative A
to the sun, but the question might
well be asked: “Is it not possible B
that all the stars are ‘fixed in space’
and that their proper motions are
the results of the sun’s motion in d
some definite direction?” In this

S
{Star)

section we examine the problem 9
thus suggested. M
In Fig. 101 consider a star 8 at N ¢

rest with respect to certain hypo- U
thetical axes in space. Suppose the
sun moves with respect to these L (8ur)

axes along the straight line L4, Fig. 101.
traversing the distance L} in one year. If U is its velocity (in
kilometres per second) and n the number of seconds in one year,
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then the distance LM—which we denote by b—is given in
kilometres by b=nl

Let A denote the angle A LS—it is the angle between the direction
of the solar motion and the direction in which the star is seen
from L. Let A, denote the angle AMS. Furtherlet A, — A = p,

so that MSL = p. Then gy, is the change in the direction of
the star, as seen from the sun, in one year. This appears in the
observations as proper motion.
If d is the distance M S in kilometres, we have

sinp, b

sinA 4’
or, since p, is a very small angle, we can write

1y = g sin A cosec 1” eennn(81),

in which p, is expressed in seconds of arc.
We can transform (31) by introducing the annual parallax I
of the star by means of

II= %cosec | ¢ eeees(32),

where a is the radius of the earth’s orbit around the sun in
kilometres. From (30), (31) and (32) we derive

m:ZnUmm.
But n = 3156 x 10% and o = 149-6 x 108 km, hence
MU sin A
B1="ymg ™ e (33)

Itis to be noted thatformula(33) provides a method of deriving
the annual parallax I of a star, provided that the solar speed U
and its direction are known and provided also that the assump-
tion regarding the *“fixity” of the stars still holds.

The proper motion g, which arises from the solar motion is
called the parallactic motion of the star. It varies directly as the
parallax II and, consequently, by (32) it varies inversely as the
distance of the star from the sun.

The point on the celestial sphere towards which the solar
motion is directed is called the solar apexz.
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In Fig. 102 let 4 be the solar apex and S a star. We shall show
later how the position of 4 is determined; meanwhile we shall
assume that its co-ordinates are known. The great circle arc 4.8
defines the angle between the direction in which the sun is
moving and the direction
of the star. Thus 48 is A.
Also, referring to Fig. 101,
we see that the change in
direction, or py,, takes place
in the plane ALS, so that
the star appears to move
on the celestial sphere along
the great circle AST (Fig.
102). As J, is greater than
A, the star appears to move
away from 4, that is, in
the direction ST

Denote by x the position
angle PST; x is measured
from 0° to 360° in the di- Fig. 102.
rection of the arrow. Then since the parallactic motion is g,
along ST we have, applying (10) and (11) and denoting the
components of the parallactic motion in R.A. and declination
by P., P; respectively,

P,=p sinysecd; Py=pcosy ... (34).
Inserting the expression for u, given by (33), we obtain
no . . .
P, = msm}\smxsecS ...... (35),
nou . .
and P; = 74 sindcosy = ... (36).

These formulae are of importance when it is desired to find the
components of the parallactic motion of a star, or of a group of
stars, when the quantities on the right of (35) and (36) are known.

152. Secular parallaz.

It is evident that if the distance LM (Fig. 101) through which
the sun moves in one year is known, then this line forms a
convenient base-line for the measurement of stellar distances.
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By analogy with the annual parallax II the secular parallaz H
as it is called, is defined by

?

’

8o

sin H =
or, since H is small, by
H = g cosce 17,
Also, from (30), b = nU, so that
nU ,
H =7 cosec 1” ceere(37),

in which H is expressed in seconds of arc. Hence, from (32)

and (37), . ny 8)

v 7 S .
The measurement of U will be discussed later; meanwhile we
state its value, which i3 19-5 kms. per second. Thus we obtain
the numerical relation between the annual parallax I1 and the
secular parallax H in the form:

O=0243H ... (39).

By means of (38) the formulae (35) and (36) take on a simpler
form: they become
P,=HsinAsinysecd ... (40),

Py=HsinAcosy ceeea.(41).

153. The solar motion and radial velocity.

In Fig. 101 let MK be drawn perpendicularly to LS. Now
LM is very small in comparison with LS and we may consider
MS and 8K equal. Thus in one year, as the sun moves from L to
M, the distance of the star decreases from LS to M S, that is, by
the distance LK. This is equivalent to the effect of a negative
radial velocity p, (in kilometres per second). Hence LK = np,,
where n is the number of seconds in one year. Also LK = b cos A
and, since b = nU by (30), we obtain

pp=—Ucosd ... (42),
in which the minus sign has been inserted, since the radial
velocity is negative. Formula (42) gives the radial velocity of
the star arising from the solar motion.
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154. The solar motion in the general case.

In section 151 we started from the hypothesis that the stars
are “fixed in space” and that only the sun was in motion with
respect to fixed axes. This assumption can be examined by
means of the observed proper motions. Referring to (35) and
(36) or (40) and (41), we see that there are two points on the
celestial sphere—the solar apex and the diametrically opposite
point, the ant-apex—where the parallactic motion vanishes, for
then A is 0° or 180°, so that both P, and P; vanish. Thus there
ought to be two regions of the sky in which the observed proper
motions of all the stars concerned should be zero. Thisis contrary
to the facts. More generally, if the hypothesis is correct, the
total proper motion of any star ought to be in a great circle
passing through a definite point 4 (Fig. 102)—the solar apex—
so that by considering only two stars in different parts of thesky
it should be possible to determine the apex as one of the two
points of intersection of the respective great circles. Actually it
is found from the proper motions that the points of intersection
derived from one pair of stars differ widely from the points of
intersection derived from any other pair of stars. The conclusion
is that the stars have individual motions of their own in addition
to the parallactic motion due to the sun’s velocity.

Under these conditions the solar motion must be given a more
precise interpretation. We have no longer fixed points in space
to which the motion of th:hm can be referred, for all the stars
as well as the sun are in motion. If we are considering the proper
motions of 10,000 stars scattered over the sky, the solar motion
is defined with reference to all these stars regarded as a group or,
more precisely, as the velocity relative to the mean centre of the
group.

Consider Fig. 103, in which § is a star and 4 is the solar apex
whose position we shall assume to be known. Let the proper

motion p of the star be along the great circle SU, and let PSU be
denoted by ¢. Both u and ¢ can be calculated from the observed
values of u, and p; by means of (10) and (11). The parallactic
motion p, is along the great circle 487, from 8 towards T'; the
angle PST is x. Let (a, 3) be the co-ordinates of S and (4, D)
the co-ordinates of the apex A. Then, in the triangle PAS,
PS=90°~3,PA=90°— D, APS = a— A, PS4 = 180° — y,
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AS = X. The values of A and x can be easily found as follows
By the cosine-formula A,

cos A = sin Dsin 8 + cos D cos § cos (¢ — A4) ...(43),
from which A can be computed, and by formula C,
—sinAcos x = sin D cos 8 — cos Dsin 8 cos (@ — 4) ...(44),

from which y can be obtained.

A is the angular distance of the star from the apex. The
direction ST is the direction of the ant-apex from S and the
angle x between the meridian SP and the great circle 87 is called

Fig. 103.

the position angle of the ant-apex. As the ant-apex is 180° from
A, the angular distance of the star from the ant-apex is 180° — A,
These angles, (180°— A) and x, can be found with sufficient
accuracy by means of specially prepared charts,* thus saving
the rather tedious computations by (43) and (44).

Now resolve the observed proper motion u, which is in the
direction SU (Fig. 103), along the great circle ST and along the

* W. M. Smart: Charts published by the Royal Astronomical Society and de-.
scribed in Monthly Notices, vol. LXXXm11, p. 465; J. A. Pearce and S. N. Hill: Publica-
tions of the Dominion Astrophysical Observatory, Victoria, B.C., vol. tv, No. 4; J. M.
Baldwin: Chart published by the Royal Astronomical Society and described in
Monthly Notices, vol. LXXXIX, p. 463,
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great circle RS drawn at right angles to AST. Let v and 7
denote these components. Then, since 78U = ¢ — ¥,

v=pcos (¢ —x)
and 7= psin (y — ¢).
Since, by (10) and (11), p, = p sin ¢ sec § and u; = p cos ¢,
we can write the formulae for v and = as follows:
v=p,co8dsiny+ pscosy ... (45),
T=ug8iny — p,cosdcosy ... (46).

Assuming the co-ordinates of the solar apex to be known, we
can obtain the value of y by formula (44) or from charts, and thus
we can calculate the values of v and 7, the values of u, and u;
being supposed known.

Let us write Ve b e (47),

where p, is the parallactic motion along ST. Then v, is the
portion of the observed proper motion in the direction ST' due
to the star’s individual motion, u, being due to the solar motion.
The component 7 is evidently due entirely to the star’sindividual
motion.

155. Statistical parallaxes.

The determination of the annual parallax of even a single star
involves a large amount of observational and computational
work. In many investigations it is of great importance to know
the mean parallax of a particular class of stars, say stars between
the tenth and eleventh magnitudes in a particular region of the
sky, and this mean parallax can be determined from the v and
v components of proper motion. We shall consider the v com-
ponents of N stars close together in the sky, the stars belonging,
for example, to some definite magnitude class.

We shall define v, to be positive when it is in the direction
ST, and negative when it is in the opposite direction SA4
(Fig. 103). If the N stars have haphazard individual motions,
the expectation will be that there will be as many stars with
positive values of v, as with negative values, so that the algebraic
sum of all the v)’s (denoted by Zv,) will either vanish or be very
small compared with Zu,. Adding the N equations of the type
(47), we have v = Iy, + Zvy,
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and, neglecting v, as the result of the previous remark, we are
left Wlth Z — 2
h = v

For a given star, v is supposed to be known—it is calculated by
means of (45) from known data. Hence for all the stars the sum
v will be easily found. Now for a star whose annual parallax
is I, p, is given by (33), namely,

__ IlUsinA
M= "7
Hence Ty, = Z—f—l———;j‘ZH.

If I1, denotes the mean parallax of the N stars, NIJ, = ZII, and
therefore we obtain, by means of (48),

4-74
°~ NUsin)
As all the quantitics on the right of (49) are supposed known, the
mean parallax [T, is readily derived.

Using equations (38) and (49) the mean secular parallax, H,
say, may be similarly computed, and it is this quantity, rather
than the mean parallax itself, that is normally derived. It is
found that the mean secular parallax decreases with increasing
magnitude class and increases with galactic latitude. The galac-
tie latitude of a star is defined with reference to the plane of
the Milky Way in the same way as its celestial latitude is
referred to the plane of the ecliptic.

I v (49).

153. Determination of the solar apex from proper motions.

If we are given that the sun is moving in a certain direction
with velocity U, then relatively to the sun each star will appear
to have an additional velocity of U in the opposite direction.
In Fig. 104 let O (the sun) be the centre of the celestial sphere and
let Oz, Oy, Oz be rectangular axes: Ox is drawn through the
vernal equinox 7, Oy through the point B on the equator with
right ascension 90°, and Oz through the pole P. Then if — X,
— Y, — Z (in kilometres per second) denote the components of
the solar motion with respect to the axes, then relatively to the
sun a star at S will have a velocity whose components are
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+ X,+ Y,+ Z. We neglect for the moment the star’s individual
linear velocity, so that we are simply investigating the effect of
parallactic motion. Let the star be at a distance of d kms. from
the sun, and for simplicity we shall take the radius of the sphere
to be d.

The velocity of the star S has components + X parallel to
OT, + Y parallel to OB and + Z parallel to OP. It is our first
object to find the components of the star’s linear velocity along

P

Fig. 104,

the rectangular axes SL, SM and SN, where SL is tangential at
S to the parallel of declination (in the sense of increasing r.a.),
SM is tangential to the meridian PSC (in the sense of increasing
declination) and SN is the radius OS produced.

Now the velocity X parallel to OT is equivalent to a velocity
X cos a parallel to OC (the angle T0OC is a) and a velocity
X sin ¢ parallel to OD, where DOC is 90°. Similarly the
velocity Y parallel to OB is equivalent to a velocity Y sina
parallel to OC and a velocity — Y cos a parallel to OD. We thus
can replace X and Y by

Xcosa+ Ysine parallel to OC  ...... (50),
and Xsine— Ycosa parallel to OD ... (51).
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Let CE be drawn tangential to the equator at C. Then CE i
perpendicular to OC and therefore CE is parallel to OD. Sinc
CE is drawn in the direction opposite to that of OD, we car
write for (51),

— Xsina+ Ycose parallelto CE ...... (52).
Also 8L is parallel to CE, so that (52) can be replaced by
— Xsina+ Ycosa parallel to SL ... (53).

Let OF be drawn in the plane of the meridian PSC perpen
dicularly to OS. Then OF is parallel to the tangent MSG at S
Consider (50). We resolve this velocity parallel to OS an

OF. Now COS = 5. Hence (X cos a + Y sin «) parallel to O(
is equivalent to

(Xcosa+ Ysing)sind parallel to OF,
or — (Xcosa+ Ysing)sind parallel to SM ...... (54),
and (Xcosa+ Ysine)cosd along OS or SN ...(55).
Simileirly the velocity Z parallel to OP is equivalent t
Z cos POS along OS and Zsin POS along S3. Bu
POS = 90° — 8, so that Z is equivalent to
Zcosd alongSM ... (56),
and Zsing alongSN ... (57).

Collecting the components of velocity along SL, SM and S§2
in turn and denoting the sums by £, n and { respectively, wi
have:
from (53), ¢=—Xsina+ Ycosa ... (58);
from (54) and (56),

n=—Xcosasind— Ysinesind + Zcosd...... (59);
from (55) and (57),
{=Xcosacosd+ Ysinacosd+ Zsind ...... (60).
As X, Y, Z are expressed in kilometres per second, so also ar
¢, 1, {. Now consider the velocity ¢ along SL. Due to thi
velocity alone, the star will move along SL through a distanc
né kms. in one year, where n is the number of seconds in one

year, and therefore, since 08 is d kms,, the angle through whicl
S moves along the parallel of declination is n¢/d in circula
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measure or 7;; cosec 1"’ insecondsof arc. Hence theright ascension

. né
of the star increases by q
But this is the component of the parallactic motion in right
ascension, P,, which we assume to be expressed in seconds of

arc. Hence né

q= P,cosdsinl”,
Introducing the annual parallax II by (4) we obtain, after

inserting the values of » and a and writing for ¢ the expression
given by (58),

4-
— Xsina+ Ycosa=—&éP,cosS ...... (61).

secdcosec 1" seconds of arc per annum.

This is an accurate equation for the star S and clearly it holds
for any other star. The reader is reminded that the parallactic
motion is alone considered at the moment.

In a similar manner, by considering the component 7 along
SM which gives rise to the component of parallactic motion in
declination, P;, we derive from (59),

4-74

— Xcosesind —Ysinasind 4+ Zcosd = o

P;

Now consider the observed components of proper motion,
po and p;. The parallactic motion contributes to u, and so does
the star’s individual motion. Similarly for p;. We can then

write po=Potp; po=Pi+pd ... (63),

where p,’, ps’ are the contributions of the star’s individual
motion to the proper motion in R.A. and declination respectively.
All the quantities in (63) are assumed to be expressed in seconds
of arc.

By means of (63), equation (61) becomes

— Xsina+ Ycosa=%y,,cos$—4%4p, cos 3

In this equation, X, Y are quantities to be found, « and 8 are
known and p, is given from proper motion observations. In
general Il is unknown and p,’ is also unknown.
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Consider N stars in a small area of the sky, so that we can
regard each star as having the same values of a and §. Each
star contributes an equation of the type (64), and adding the
N equations we derive

_ . _ 4-74 Ha 4-74 Ha
Xsina+4 Ycosa= Tcosb‘E(ﬁ)— -Tcos82<~>

If 11, corresponds to the mean distance d, of the stars, we can
write (65) as

. 474 474 ,
— Xsine+ Ycosa= mcosSZp,—N—ﬁocopr.
...... (66),

in which the assumption is now made that the stars have each
the same parallax II,.

Now consider the last term of (66). p,” is the component of
proper motion due to the star’s individual velocity, and it is as
likely to be positive as negative. We can either assume that
2 p.' vanishes or that, being small, it is of the nature of an
accidental error in the measurement of the proper motions.
Neglecting the last term we have

. 4-74
— Xsgina + Ycosa=Nﬁ7000582p.,, ...... (67),
in which II, is unknown and X u, is obtained from the observed
1

proper motions. Write NZp.a = Ha, 80 that g, is the average

observed value of u, for the N stars.

Suppose that we deal with a large number of regions in the
same way, and for simplicity assume that there are N stars in
each region and that the mean distance of the stars in each
region is the same, so that I, is constant. Then we have for each
region an equation of the type

— Xsing+ Ycosa= Kg,cosd ... (68),
where K = 4-74/[1, and is regarded as an unknown constant.
In a similar manner and with the same assumptions we derive
from (62),
— Xcosasind— Ysinasind + Zcosd = Ki; ...(69).
If there are M regions, there are M equations of the type (68)
and M of the type (69). The solution of these equationsisefiected
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by the method of least squares. The procedure is as follows.
Multiply (68) throughout by — sin ¢ (the coefficient of X) for
each of the M equations and add together all the resulting
equations. Denoting summation by £ we obtain

XZXsin?a— YZsinacosa=— KX fi,sin e cosd ...(70).

Similarly by multiplying by cos a (the coefficient of Y) and
summing we derive

— XZsinacosa+ YZcosta=KZ g,cosacosd...(71).
Treating (69) in a similar manner, we obtain the three equations-

XY costasin?d + YZsinacosasin?d — ZX cos asin 8 cos §

=— KX fscosasind ... (72),
XZsinacosasin?d + YZXsin2asin?d — ZX sin asin 3 cos &
=—~ KZ j;sinasind ...... (73),

— XX cosasindcosd — YIsinasindcosd + Z2 cos?d
=KX puscosd ... (74).

In the five equations, (70) to (74), the coefficients of X, ¥ and Z
can all be calculated from the known values of « and 8, and also
the coefficients of K on the right-hand sides of these equations,
since the values of fi. , 72; are obtainable from the observed proper
motions. Adding (70) and (72), adding (71) and (73) and
rewriting (74), we have the three equations in gymbolical form
aX +bY +cZ =KS,
bX + BY+dZ =KS,; ... (75),
cX +dY + CZ=KS,
in which the coefficients of X, Y and Z are all calculable
functions of @ and 8 and 8;, 8,, S, are also known. The solution
of these equations (75) determines
X Y Z
K’ K’ K’
but not X, Y and Z, since K is unknown.
We can now derive the co-ordinates of the solar ant-apex
towards which the sun is moving with a velocity whose com-
ponents are + X, + ¥, + Z. (We assumed originally that the

components of the solar motion are — X, — ¥, — Z, and, as this
motion is directed towards the apex, the velocity whose com-
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ponentsare+ X,+ Y, + Z will be directed towards the opposite
point on the celestial sphere, that is, the ant-apex.)

In Fig. 105 let J be the ant-apex and take rectangular axes
as shown. Let PJC be the meridian through J and let 4, D be
the equatorial co-ordinates of J. Then 70C = A and JOC = D.
The components X and ¥ combine to give a velocity (X + Y2

A%
Pt

Fig. 105.

along OC and 4 is given by tan 4 = Y/X. Also (X2 4 Y2t
along OC combines with Z along OP to give the reverse of the
solar motion in the direction OJ, so that

tan D = Z/(X? + Y?)h,
We rewrite these equations in tan 4 and tan D as follows:

tnd = 3% D=4/ [(X)+ ()] -0,

The ratios X are known from the solution of (75); hence

Y Z
K’'K’'K
4 and D are determined. The co-ordinates of the solar apex are
then 180° 4- 4 and — D.

The method described above, which makes use of proper
motions only, cannot determine the magnitude of the sun’s
velocity but only its direction, that is the position of the solar
apex on the celestial sphere. The co-ordinates derived, however,
depend to some extent on the particular stellar class that is used
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in the investigation. One further point should perhaps be
recognised. The assumption that the stars’ individual motions
are entirely random is not justified on account of the systematic
rotation of the galaxy, and allowance must be made for this in
the investigation.

157. Determination of the solar motion from radial velocities.

We now consider formula (60), which gives the component
velocity { in the line of sight OS (Fig. 104) due to the solar
velocity. Thus { is simply — p, of section 153, and by (42) we can

write {=UcosA ... (77),

where U is the solar velocity. Let p now denote the observed
radial velocity.* Then the solar motion contributes U cos Ato p
and the star’s individual space-velocity contributes p,, say.

Hence p=Ucosd+p, ... (78).

Hence, from (60), (77) and (78), we clearly have
Xcosacosd+ Ysinacosd + Zsind=p—p, ...... (79),

in which p is given by spectroscopic observations and p, is un-
known. If the radial velocities of N stars, scattered over the
sky, are observed, each star contributes an equation of the form
(79) and the N equations are solved by the method of least
squares. Multiplying each equation in turn by the coefficient of
X and summing we obtain

X Xcos?acos?d+ Y Zsinacosacos?d + Z X coseasindcosd
=Xpcosacosd—Lp,co8acosd ...... (80).

Now the radial component p, of the star’s individual linear
velocity is as likely to be positive as negative, and the sum
% pycos a cos § will tend to vanish. Neglecting this term in (80)
we write

X X cos?acos?d+ Y Xsinacosacos?d+ Z T coseasindcosd
=2Xpcosacosd ...... (81).

* The observed radial velocity with which we are concerned here is the radial
velocity relative to the sun. But the observation of a star’s radial velocity made on
the earth includes an effect due to the earth’s orbital motion round the sun and an
effect due to the earth’s rotation (pp. 213-217). We suppose that these effects are
removed from the actual observations of radial velocity.
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Similarly,

X Ssinacosacos?d+ Y Tsinacos?d + Z Tsingsindcosd
=Zpsinacosd ...... (82),

XS cosasindcosd + Y Zsinasindcosd + Z X sin?é
=2Xpsind ... (83).

The coefficients of X, Y, Z in these equations can be computed
and also the quantities on the right-hand sides. Thus we have
three linear equations from which X, Y and Z are derived. Itis
to be remarked that X, Y and Z are given from this solution in
kilometres per second.

The co-ordinates of the solar ant-apex 4 and D are then given
by (76) as in the preceding section,

The solar velocity U is given by

Ut=X2+ Y%+ 22 eenn.(84).

The treatment given above again neglects the effect of galactic
rotation. On account of this, that part of the star’s radial
velocity that we have called p, will have a systematic component
which will depend on the star’s direction and on its distance
from the sun.

Recent determinations* of the solar motion using both proper
motions and radial velocities give the following results:

Right Ascension of the Solar Apex 271°,
Declination of the Solar Apex ... + 30°,
The Solar Velocity ... ... 19-7 km per second.

EXERCISES

1. The parallax of Lalande 21258 is 0”177 and the total annual proper
motion is 4”:52. Show that the star’s velocity at right angles to the line of sight
is 121 kmas. per second. {Lond. 1928.)

2. If the parallax of a star is 0:037 and its total annual proper motion is
07-52, show that jts tangential linear velocity is 2-24 times the orbital velocity
of the earth, the latter’s orbit being assumed circular. [Lond. 1925.)

8. The parallax of 61 Cygni is 0"-30, and its motion perpendicular to the line
of sight is 5”-2 per year. Compare its tangential linear velocity with that of the
earth in its motion round the sun.

* For a more detailed discussion of the solar motion and its determination, see
D. Mihalis, Galactic 4stronomy, chapter 5 (Freeman, 1968).
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4. The total annual proper motion of a star (r.a. 3%, declination + 10°) is
0’-1. Assuming that this proper motion is entirely parallactic, determine the
star’s parallax, given that the solar motion is 19-5 kms. per second towards the
point (183, + 34°). [Lond. 19217.]

5. A star (a, 8) has a tangential linear velocity, relative to the sun, of V kms.
per second in the direction of a point on the celestial sphere whose right
ascension i8 4 and declination is D. Prove that

i = 050141 VII cos D sin (4 — a) sec §,
where IT is the star’s parallax. [Lond. 1926.]

8. The r.a. and declination of Sirius are 6 41™ and — 16° 35’ respectively,
and the proper motions in R.A. and declination are — 0s-0374 and — 1”-209;
the observed radial velocity is — 7-5 kms. per second, and the parallax is 0-38.

Show that the velocity of Sirius relative to the sun is inclined to the line of
sight at an angle of about 1144°, and calculate the magnitude of this velocity
in kms. per second. ) [Lond. 1929.]

7. If p,, ps are the components of annual proper motion of a star (q, 8) at
time ¢ with reference to a particular equinox and equator, and if z,’, ps” are the
components of proper motion at time ¢ with reference to the same equinox and
equator, prove that, ¢’ — ¢ being expressed in years,

B’ = = O, g tan 8 — 2V, /4-T4) (¢ — 1) sin 17,
e — g = — {2252 8in 8 cos  + 2V uy/4-74} (¢ — ) sin 17,
11 being the star’s parallax in seconds of arc and V its line of sight velocity in
kms. per second.
[k, is expressed in seconds of time and p; in seconds of arc.] [Lond. 1930.]

8. pu,, ps are the components of proper motion, in equatorial co-ordinates,
of a star S (e, 8). If (I, b) are the galactic co-ordinates of § and p;, pp the
corresponding components of proper motion, show that

py= p, co8 p cos dsec b + pgsin nsech,

By = — o8N €08 8 + pzcosy,
where 7 is the angle PSK, P and K being the north poles of the equator and
galactic plane respectively.

[N.B. nis to be reckoned positive if, on going round the triangle SPK in the
order named, the area of the triangle is on the left.] [Lond. 1926.]

9. The R.A. of the node of the galactic plane on the equator is @, and 1 is its
inclination to the equator.

(¢, 9, {) are the components of velocity (in kms. per sec.) of a star (a, 8)
referred to galactic rectangular axes, the direction of the ¢-axis being given by
the node N.

If ., s are the components of annual proper motion in seconds of time and
seconds of arc respectively, and II is the parallax of the star, show that

§sin(a— Q) —ncosicos(a~ Q)+ {sinscos(a — Q)= — I[iu“coss,
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where K is a certain numerical constant, and derive the corresponding equations
in u; and in the radial velocity. What is the value of K in the system of units
employed? [Lond. 1926.]

10. If (u, v, w) are the components of the linear velocity V, referred to
equatorial axes for a fixed date, of an open cluster, prove for any cluster star
(a, 8) with components of annual proper motion p,, ps (both in seconds of arc)
that

% (s8I0 @ — p, €OS a sin § cos 3)

— v (psco8 a+ p, sin asin 8 cos §) + wy, cos?§ = 0.

Hence show how the co-ordinates (4, D) of the convergent point can be
derived. [Lond. 1930.]

11. Show that if 8 be the angle between the convergent point of a moving
cluster and one of its component stars, whose radial velocity is », the velocity
'of the cluster relative to the sun is v sec , and the distance of the star is
v tan 8 - observed proper motion. If v = 45-6 km./sec., 8 = 60°, and the p.M.
is 18, find the parallax of the star. [Lond. 1922.]

12. A star has radial velocity p, parallax =, and proper motion u. These
quantities are specified respectively in kilometres per second, arc seconds, and
arc seconds per year. Show that their annual rates of change are given by

dp ¥

P =gt ”

gt 7 o sinl”,
dp ppm . o,
@ =" agrnl’
dm pmt .,
@t = T amgsnl

(Glas. 1974.]

13. Prove that the space velocity of a star (a, 8) is directed towards the point
on the celestial sphere with equatorial co-ordinates (A, D}, where
11y
an{d —a) = . S%_
tan(d —a) = T4 tans)
(Here all symbols have their usual meanings and are measured in their usual
‘units). Derive a formula to determine D. [Glas. 1973.]



CHAPTER XII
ASTRONOMICAL PHOTOGRAPHY

158. The photographic refractor.

The two principal features of the photographic refractor with
which we need concern ourselves in this chapter are, first, the
object-glass and, second, the photographic plate (Fig. 106) We

'I?mge‘nc
Plane

P ¢
S Photogrephic Plate
Fig. 108.
shall assume that the object-glass (which is specially designed

for photographic purposes) is correctly adjusted in the telescope
tube and that CO is the optical axis, C being the centre of the



ASTRONOMICAL PHOTOGRAPHY 279

object-glass. The focal plane of the object-glass is F@, at right
angles to CO. The photographic plate (which we shall assume to
be a square) is held in position by a carrier (not shown in the
figure) in such a way that the sensitive side of the plate is
exactly in the focal plane. We shall also suppose for simplicity
that the optical axis CO passes through the geometrical centre
of the plate. Consider a star seen in the direction CA (OC
produced). All the rays from the star, falling on the object-glass,
will be brought to a focus at O and a small circular image of the
star will be formed on the photographic plate at this point.
Consider another star seen in the direction CB. The rays falling
on the object-glass from this star will be brought to a focus at R
{on BC produced). Let the plane ACB or RCO be parallel to an
edge of the plate. Suppose that the image of the star B is just
on the plate at R. Then if I denotes the length of the side of the
plate, I = 20R and, since OR = OC tan RCO = OC tan ACB,

l=20Ctan 8 ... (1),

where 8 denotes the angular distance between the stars 4 and B.
OC is of course the focal length of the object-glass and is pre-
sumed known. If the dimensions of the plate are known we can,
by (1), calculate the area of the sky (in angular measure) which
can be photographed. For example, suppose that we have an
19 refracting telescope with a focal length of 589 cm, and the
plates used are squares of side 16 cm. (The diameter of the
object-glass will be 31 cm.) Then, by (1),

16
2 x 589’
so that B = 47’ approximately. Thus a square region of the sky,
13° by 13°, can be photographed on the plates.

Of great importance is the scale of the plate or the relation
between a linear distance on the plate and the corresponding
angular displacement in the sky. Thus for the plates just referred
to, 1 cm. on the plate is equivalent to 53', or 1 mm. is equivalent
to 35’ approximately. We can express this somewhat differ-
ently; if two stars are separated by 5%’ in the sky, the centres of
their images on the photographic plate will be 1 cm. apart.
Similar considerations apply equally to the reflecting telescope
when used for photographic purposes,

tan 8 =
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159. The tangent plane.

In Fig. 106 the celestial sphere, with C as centre, is drawn.
The tangent plane at 4 is drawn—this plane is at right angles to
the radius CA4 and is therefore parallel to the photographic plate.
It is to be remembered that 4 is the point on the celestial sphere
towards which the optical axis of the telescope is directed.
Produce CB to meet the tangent plane in D; then D will be
called the projection of B on the tangent plane. The projection
of any other point on the celestial sphere can be constructed in
a similar manner by joining the centre C to the point under
consideration and producing the radius to meet the tangent
plane. Consider a star L whose projection on the tangent plane
is N and whose image on the photographic plate is at M. If
b = 0CM = ACL, we have

OM AN
tan ¢ = —0—U=;4’CT ...... (2)

It follows generally that the system of stellar images on the plate
is similar to the system of the projections on the tangent plane,
one system however being on a different linear scale from the
other. Let AR', A8’ be the positive directions of rectangular
axes in the tangent plane; let OR, OS be parallel to AR’, AS'
respectively, in the plane of the plate, their positive directions
being opposite to those of AR and AS'. Let &', o’ be the co-
ordinates of the projection of a star on the tangent plane and
¢, n the co-ordinates of the image on the plate; then by the
principle of similarity, we have

& ¢
I6=00 e (3)
n_

and 0-00 e (4).

160. Standard co-ordinates.

For the sake of geometrical simplicity we shall suppose the
celestial sphere (centre C) and the tangent plane at A to be
drawn as in Fig, 107. It is to be understood that 4 is the point
on the celestial sphere towards which the telescope is pointed.
If S is a star near 4, its projection 7' on the tangent plane is
obtained by joining ¢ to § and producing CS to meet the
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tangent plane in 7. Draw the great circle arc 4S5; then, since
the plane of this great circle passes through C, it follows that all
radii joining € to points on AS lie in one plane and this plane
intersects the tangent planein astraightline AT. More generally,
we can say that any great circle projects into a straight line in
the tangent plane. Let P be the north pole of the celestial
sphere. AP is the meridian of 4 and it projects into the straight
line 4Q. We shall take AQ as the n’-axis of the tangent plane.
The §'-axis is taken to be AU, which is drawn perpendicular to

C
oA
// ’ I,
P /
rd - /
I - ,
- i
P 900\ 5 /Q
/ & \
P o2 NG
0 6
0 < aals )? 0
B
~ iR} k
S d 4
3 U
P~ - :
= Eaxes
. d &
Fig. 107.

AQ, and its positive direction is taken to be eastwards of the
meridian AP so that increasing values of ¢’ correspond to in-
creasing values of the right ascension.

Since AT lies in the tangent plane, AT is perpendicular to
AC and is therefore the tangent at A to the great circle arc AS.
Similarly, 4@ is the tangent to the great circle arc AP. Now

QAT defines the spherical angle PAS ; hence QAT = PAS. Thus
we see that the angle between any two great circle arcs, inter-
secting at the tangential point 4, is exactly reproduced on the
tangent plane as the angle between the two straight lines into
which the great circles project. This remark holds only for great
circles passing through the tangential point; for example, the
great circle SP projects into the straight line 7Q and AP

projects into 4Q; but AQT (the angle between AQ and TQ) is
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not equal to SPA4 (the angle between the great circles AP and
SP). '

Denote the arc A4S by ¢ and SAP by 6; then QAT = 9.
Draw perpendiculars TU, TV to AU, AQ respectively. Then

VT =¢ = AT sin 6

and UT'=%"=ATcos® ... (6).

Now AT = AC tan ACT = AC tan ¢.

Hence ——% =tan¢sind ... (7Y,
il = tan ¢ cos § (8)
qo = tandcosf ...

Hence, by (3) and (4),

-0% =tan¢sind ... (9)

and OnC =tang$cosd ... (10),

in which ¢ and 7 are the co-ordinates of the image of § on the
photographic plate with reference to rectangular axes through
the centre O of the plate (Fig. 106), and drawn parallel, but
oppositely directed, to the axes AU, AQ on the tangent plane.
OC is the focal length of the telescope. Suppose that the focal
length is known in millimetres and that the plate co-ordinates
¢ and 7 are derived also in millimetres by processes which will
be described later; then the values of ¢ and 6 can be calculated
from (9) and (10). As we shall see immediately, ¢ and 6 are
functions of the right ascensions and declinations of 4 and S;
if the right ascension and declination of 4 are known, the right
ascension and declination of § can then be deduced from the
values of the co-ordinates ¢ and 7.

If we take the focal length OC to be the unit of length and
€, n to be expressed in terms of this unit, we have from (9)
and (10), g=tandsingd .. (11),
n = tan ¢ cos 8

¢ and n are then called the standard co-ordinates of the star
concerned. In this definition of standard co-ordinates—first
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introduced by Professor H. H. Turner*—the following points
have to be noted: (i) the origin of the co-ordinate axes corre-
sponds to a definite position, whose right ascension and de-
clination are specified with respect to a standard mean equinox;
the epoch of this mean equinox may be chosen as 1900-0;
(ii) the £- and n-axes are correctly oriented for the epoch 1900-0;
(iii) the definition, being a purely geometrical one, excludes the
effects of instrumental imperfections and of refraction and
aberration (all of which will be considered later). The standard
co-ordinates of a particular star thus specify the position of the
star uniquely, and can therefore be used in place of right ascen-
sion and declination.

161. Formulae for the standard co-ordinates.

Let A, D be the right ascension and declination (referred to
1900-0) of the point 4 on the celestial sphere, and a, & the
corresponding co-ordinates of the star S. We shall now show
how the relations between £, » and 4, D, e and & are obtained.
In the spherical triangle ASP (Fig. 107) we have: AP=90°— D,

SP = 90° - 3§, APS=a-4 (in the figure, S is eastwards of the

meridian AP), AS = ¢, SAP = 9. Then by formulae A, B and
C, we have

cos ¢ = sindsin D + cosdcos Dcos (¢ — 4) ...... (13),
gingsinfd=cosdsin(a—4) ... (14),
sin ¢ cos 6 = sin 8 cos D — cos § sin D cos (¢ — 4) ...... (15).

Dividing (15) by (13) we obtain, using (12),
_ cos.D — cotsin Dcos (¢ — 4)

"= sinD + cotdcosDeos(a— 4) (16).
Define ¢ as follows:
cotg=cotdcos(a—4) ... (17).
cos D — gin Dcot g
Then N=sinD+cosDcotg’
from which n = tan (g — D) eeen(18).

% Monthly Notices, vol, LIv, p. 13 (1893}
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Again, dividing (14) by (13) and using (11), we have
cot &sin (@ — 4)

§=5in~D+cosDcot5005(a_A) """ (19)
_ cotqtan(a—4)
"~ sinD + cos Dcot g
by (17}, so that
_ cosgtan (¢ — A) a0y

cos (g — D)

The auxiliary quantity ¢, which has been introduced into (18)
and (20) in order to simplify the logarithmic computations of
¢ and 7 in the case when 4, D, ¢ and § are all known, is readily
seen to have a simple geometrical interpretation. Draw a great

circle arc SL to cut AP at right angles in L (Fig. 108). Decnote
PL by z; then by formula D,

coszcos (e — A) = sin z tan 8 — sin (a — 4) cot 90°,
from which tan x = cot & cos (a — A).
Hence, by (17), z = 90° — ¢, so that ¢ is the declination of L.
The formulae (18) and (20) enable the calculation of ¢ and 7
to be made when 4, D, ¢ and & are known.
We now derive the formulae which will give ¢ and § in terms
of 4, D, £ and . We have from (16),
nsin D + ncot & cos D cos (@ — 4)
= cos D — cot &sin D cos (@ — 4)

b

from which
cot d cos (@ — A){ncos D + sin D} = cos D — nsin D,

and hence, 1—ntan D
cot d cos (a ~ A) = mj)ﬁ
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Again, from (19),
cotdsin (@ — Ay = Esin D + £cos Deot 8 cos (e — A)
cos D (1—ntan D))
T yitnD  §

=¢ {sin D+
by means of (21), whence we derive

cotdsin{a— A)= """ L (22).

Divide (22) by (21); then
Esec D

tan (¢ — 4) = 1= ytanD

from which (¢ — A) can be calculated and « obtained. When
(z — A) has been found, & can be obtained from (21) or (22).

In astronomical photography there are two fundamental

processes employed directly or indirectly. The first is the cal-

culation of the standard co-ordinates of one or more stars whose

right ascensions and declinations are known; this process

involves the use of equations (18) and (20). The second is the

calculation of the right ascensions and declinations of stars from

the values of their standard co-ordinates; this process is carried

out by means of (23) and (21) or (22).

...... (23),

162. The measurement and scale of photographic plates.

For convenience we shall consider the plates taken with
astrographic telescopes. These instruments, constructed ac-
cording to a standard design, were in use in about a score of
observatories scattered over the globe, the work to which they
have been principally devoted being a complete photographic
survey of the heavens. It must be understood, however, that
the methods described below are now mainly of historical
interest, since the photographic survey is now completed.
Modern computer methods that are now being used in astro-
metric work are highly specialised and, as such, are beyond the
scope of this book.

On each astrographic plate, a net-work system of parallel lines
(Fig. 109) is photographed, either before or after the plate is
exposed to the stars, so that on development the plats shows the
stellar images and the réseau system of lines. The lines are
equally spaced at intervals of five millimetres. We shall suppose
that the central lines XOY and UOV correspond exactly to the
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¢- and n-axes already defined. Consider a star-image at S. The
distance A4S, parallel to OX, is measured by a machine and we
shall suppose that 48 = 4-14 mm. The distance of S from the
axis UOV (that is to say OC) is thus 10 + 4-14 or 14-14 mm.
In a similar way, BS is measured and the distance OD obtained.

Now the standard co-ordinates are expressed in terms of the
focal length regarded as the unit; hence the standard ¢ co-ordinate

215 -10 -5 U 45 110 115

+15 ‘ +15
+10 +10
Df---f--—f--9
4, S
+5 : + 9
g
Y 7 6 X
-5 -5
-10 -10
-15 -15

-15 =10 -5 V7 +5 +10 415
Fig. 109,

of 8, for example, in Fig. 109 is OC (measured in mm) divided
by the focal length (measured in mm). For simplicity, consider
two stars (of declination 8, and §,) on the central meridian 4P
and let ¥,, Y, (along the n-axis) be their standard co-orcinates.
Then, by (17) and (18),
Y, =tan (3, — D) and Y, = tan (3, — D).

Assuming that (8, — D) and (8, — D) are small angles and ex-
pressed in n.inutes of arc, we have

Y= —D)sinl and Y,=(§; — D)sinl’,
so that Y, - Y, = (3 — &)sin ¥,
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If d is the distance between the images measured in mm and
f is the focal length in the same unit, we have Y, — Y, = d/f,
and consequently, S, — 8, =s.d

where s = (1/f) cosec 1’; the value of s can thus be regarded as
known. s is the “scale” of the plate; it gives the number of
minutes of arc corresponding to 1 mm on the plate. Hence, by
measuring the distance (in mm) between the images of any two
stars, we are enabled by (24) and the known value of s to deduce
the angular separation of the two stars in the sky.* The astro-
graphic telescope was designed to give the scale of 1 mm to 1'.

In certain classes of work it is sometimes more convenient
to measure small distances on the plate in terms of revolutions
of the micrometer attached to the measuring machine. Pro-
ceeding as before, we measure the distance between two stellar
images in terms of the micrometer scale (say it is 3-456 revolu-
tions), and thisnumber corresponds to the number of minutes (or
geconds) of arc by which the stars are separated in the sky. For
example, if one revolution of the micrometer head corresponds
to 12"-34 on the photographic plate, then the angular separation
of the two stars will be 42""-65.

163. The measured co-ordinates.

In defining the standard co-ordinates of a star we have as-
sumed (@) that the optical axis of the telescope passes through
the origin of co-ordinates on the plate, (b) that the plate is per-
pendicular to the optical axis, (¢) that the n-axis corresponds
precisely to the projection of the central meridian, for the epoch
1900-0, on the tangent plane, (d) that the ¢-axis is perpendicular
to the n-axis. In practice it is impossible to attain the geo-
metrical perfection just indicated, and consequently the co-
ordinates of a star-image, measured with reference to the axes
on the plate, must be expected to differ (generally slightly) from
the theoretical standard co-ordinates. But this is not all.
Hitherto, in referring to star-images, we have ignored the effects
of refraction and aberration. We have seen in previous chapters
that owing to refraction and aberration the apparent position
of a star on the celestial sphere is displaced by measurable or

* The focal length, f, and the scale of the measuring machine change slightly with

temperature; allowance for these changes is made automatically by the_* plate
constants” a and e (section 167),
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calculable amounts from its true position; consequently the
actual image of a star on the photographic plate will be some-
what displaced from the position it would occupy were these
effects inoperative. Tt will thus be realised that standard co-
ordinates are ideal co-ordinates, whereas the measured co-
ordinates of a star-image include the effects of geometrical (or
mechanical) imperfections and the effects of refraction and
aberration. At first sight the problem of deriving the standard
co-ordinates of a star from the measured co-ordinates of its
image on the photographic plate seems one of great difficulty;
actually, as we shall see, the solution in practice is extremely
simple. We shall now examine in detail the differences between
the standard and measured co-ordinates.

164. Discussion of errors.

We shall consider the errors individually. We shall denote by
¢ and 7 the true standard co-ordinates of a star and by x and y the
co-ordinates as influenced by the particular error concerned.

{a) Error of orientation.

In Fig. 110 let XOY and UOV be the axes of co-ordinates
correctly centred and oriented for the epoch 1900:0; let X'OY’

U
U .
X'
CHB
O a
Y Pz X
}//
-
[7
Fig. 110.

and U'OV’ be the axes on the plate (the central réseau lines)

correctly centred but erroneously oriented. Let X'0X = a.
Let § be a point whose standard co-ordinates are ¢ and n—
referred to OX and O Y—and whose co-ordinates referred to 0X’
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and OY' are x and y. Draw perpendiculars S4, SB to 0X, 0X’
respectively. Then 04 = ¢, AS =7, OB =z and BS=y. We

have 04 = OB cosa + BScos (90° + «),
or £ =zcosa— ysing,
whence f—x2=—2x sm2g — ysina,
Similarly, 7 —y = zsina-— 2ysin? g .

We write these in the form:
f—x=01x+bxyl
n—y=dz+ ey

where a,, ... ¢; are simple functions of a. In practice a is always

asmall angle and in consequence the coefficients a,, ... ¢; are also
small. The formulae (25) are essentially linear in z and y.

.(25),

(6) Non-perpendicularity of axes.

If the x-axis on the plate is not exactly perpendicular to the
y-axis, it is clear that we shall again obtain linear formulae of
the type (25) for the quantities ¢ — x and n — y.

A similar result is also obtained if the corresponding axes of
the micrometer scale are not exactly perpendicular.

(c) Centering error.

Suppose firstly that during an exposure the direction of the
optical axis corresponds to a given direction (4, D) referred to
the mean equinox of 1900-0, and that ¢ and 7 are the standard
co-ordinates of a star (e, 8) with reference to the position (4, D)
as centre. It is hardly to be expected that the straight line
joining the centre of the object-glass to the origin of the im-
pressed réseau co-ordinate axes will coincide exactly with the
optical axis, and consequently the origin will eorrespond to
slightly different values of 4 and D. Secondly, the optical axis
may not be directed quite accurately to the position (4, D)
for 1900-0. As a result, we must therefore assume that the
origin of co-ordinates on the plate corresponds to a position
(d+ AA, D+ AD), where A4 and AD may be supposed to be
small quantities.

All other errors and influences being assumed absent, let x
and y be the co-ordinates of an image with respect to the réseau
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axes. Then 2 and y may be taken to be the standard co-
ordinates of the star concerned with reference to the position
(A + A4, D+ AD) as centre. We shall denote z — ¢ andy — 5
by A¢ and Ax respectively.
Now, by (11) and (12),
§=tan ¢ sinf, 5 = tan ¢ cos b,

where ¢, § are functions of 4 and D. Corresponding to incre-
ments A4 and AD, we shall have increments A¢, Af. Hence we

have  A¢_ Ag (1+ tan?¢)sin 8 + Aftan ¢ cos 6,
An = A (1 + tan? ) cos § — Aftan ¢ sin 6.

For a star at an angular distance of 1° from (4, D), tan¢ = 1/57,
and in the above formulae we can neglect such terms as have
factors Ag tan®$. We thus have

A¢ = A¢ sin 6 + nAf
An = A¢cosf - fA&}

We have now to express A¢ and Af in terms of A4, AD.
From (13) we have

— 8in p A = AD {sin 8 cos D — cos & sin D cos (e — A)}
+ AA cos S cos Dsin (a — 4),
and, using (14) and (15), this becomes
Ap=—ADcos§— AAdcosDsinf ...... (27).
From (14) we obtain
Afsin ¢ cos § + A cos ¢ sin § = — A4 cos § cos (a — A),
or, using (27),
Afsin ¢ cos 6 = cos ¢ sin 6 (AD cos § + AA cos D sin 6)
— A4 cosdcos (@ — A).
Multiply (13) by cos D and (15) by sin D and subtract. Then
cos 8 cos (¢ — A) = cos ¢ cos D — sin ¢ cos 0 sin D.

...... (26).

Hence
Afsin ¢ cos § = AD cos ¢ sin 6 cos §
+ AAd {cos ¢ sin? 8 cos D — cos ¢ cos D + sin ¢ cos fsin D},
from which
Afsing = ADcos ¢ sin  + A4 (sin ¢ sin D — cos ¢ cos § cos D).
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Multiplying this last equation by sec ¢ cos 8, we have
nAf = ADsin f§cosf+ A4 (ysin D — cos? § cos D).

Inserting this expression for nAf and the expression for A¢
given by (27) in the first of (26), we obtain

Aé =—AAcosD+ nAAsin D,
or §—x=AAdcosD~—nAdsinD.

As (¢ ~ x) is of order A4, we can write this last equation with
sufficient accuracy as

E—-x=AAdcosD—yAA sinD.}
Similarly, n—y=AD+2AAdsinD
These formulae have the linear forms:
§—x= b,y + c,,
n—y=d + fa.

(d) Error of tilt.

This error is due to the non-perpendicularity of the optical
axis to the plane of the plate. 1f 4 is the angle between the
optical axis and the normal to the plate, the expressions for
¢ — x, n — y are of the form

¢ — 2= tani (pz? + quy),

7 — ¥y = tani(pzy + gy*).
As the angle 4 is in practice only a few minutes of arc and as the
squares and products of z and y only are involved, the correction
for tilt can generally be neglected.

The total effect of the various errors considered here is to give
the displacements (¢ — z) and (p — y) in terms of essentially
linear expressions; we can thus write the general formulae

E—z=ax+by+c

n-y=de+ ey+f}
in which a, b, ... f are small quantities depending on the small
errors involved.

165. Refraction.

We now investigate the displacements of the stellar images
due only to refraction. In Fig. 111 the tangent plane to the
celestial sphere at 4 is drawn as in Fig. 107. Z is the zenith and
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W is its projection on the tangent plane; let the co-ordinates of
W be X, Y. Owing to refraction, a star § is seen at §’, the
displacement S8’ being along the great circle arc joining S to Z.
We shall use the formula [no. (7) of Chapter 111]

88 =ktanZS ... (30),

in which k is expressed in circular measure and ZS is written,
without sensible loss of accuracy, in place of the observed
zenith distance Z8’. The great circle ZS’S projects into the
straight line WT'T on the tangent plane, T' and 1" being the

Fig. 111

projections of S and 8 respectively. Let £, 1 be the co-ordinates
of T and z, y the co-ordinates of 7", 1f £, p and z, y are expressed
in terms of AC as the unit of length, these quantities are the
standard co-ordinates of the star and the measured co-ordinates
of its image on the plate respectively.

Since the region to be photographed is generally no more than
2° x 2°, the different points on that part of the spherical surface
concerned are actually very close to the corresponding projected
points on the tangent plane; we accordingly assume that
88’ = TT". From (30) we have

TT = ktan Z8 ... (31).
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Since 7', 7", W are collinear, we have
z-¢ X—¢ y-n_Y-nq

T~ TW T T TW
and writing A¢ for (¢ — x) and Ay for (y — y) we obtain, from (31),
X ¢
A = — '(TW D tanz8 (32),
__ k(Y =) 3
Ayp=— TW tan Z8 ... (33).

We remind the reader that the different co-ordinates £, n, z,y, X,
Y are all supposed to be expressed in terms of AC as the unit of
>length In particular, ¢ and n will thus be small quantities and

'in the sequel we shall neglect the much smaller quantities £2,
t£x, »% and higher powers and products of ¢ and .

. Now from the plane triangle TAW, we have
TWe=AT*+ AW?2— 24T . AW cosTAW,
‘so that
X (Y — =)+ (X2 T

— 247 . AW cos TAW,
“’h“’h GIVESUS  4p AW cos TAW = Xé+ Y one.. (34).
From the spherical triangle Z4.S, we have by the cosine-formula

“A' cos ZS = cos AS cos AZ + sin ASsin AZ cos ZAS
r AC AC AT AW
; =crcwtor ow
'Since TAT defines the spherical angle Z4S, we have from (34),
{_,puttmg AC =1,

cos Z48.

14+ X+ Yy
CO3 Z8 = —Z,“;,.'(?-W'“—

CT%= 1+ &4 9?
= 1, when we neglect {2 and »2

o _l+‘\§+ln or
;;‘;ence COs 7S —'(,ﬁ/ = saeees (00),
4 . 7 T 12

,from which gin? ZS = L (IC+I£;:§ + Tn)

v (CW2-1)—2(X¢+ Yo)

B = CWe

& AWz - 2(X¢+ In)
b = Ci3




294 ASTRONOMICAL PHOTOGRAPHY

Hence, using the binomial theorem, and neglecting £2, etc., we

obtain
. _ AW X¢+ Yy
sin ZS = 7,0 (1 - ﬁ?f‘) ...... (36).
From (35) and (36),
AW (1~—-X§1§,2Y )
tan 28 = ————ar—no0p- ... (37)
14+ X¢+ Yy

Now TWi=(X-§62+(Y —n)?
= X2 4 Y2 — 2(X¢ 4 Y9u), neglecting €2, 2,
— AW 2 (X¢+ Y
TW = AW(l_}ﬁfZl*W?ﬂ) ...... (38).
Hence from (37) and (38),
tan ZS = TW (14 X¢ 4+ Yq)?
=TW({l—X¢{— Yy).
We thus obtain from (32),
Af= —k(X — &) (1— X¢ - Yn),
or Af = —EX +E{(1+ X3¢+ XY} .. (39).
Since (¢ — z) and k (expressed in circular measure) are both
small, we can write z and y for £ and » respectively on the right-
hand side of (39) without introducing any appreciable error.
Write (¢ — z) for A¢; then (39) gives us
Af=f—z=—kX+E{(1+ X%+ XTy}...... (40).
Similarly, we obtain
An=n—y=—kY+k{XYz+ (1+ Y?)y}...... (41).
The displacements due to refraction for the centre of the plate
are — kX and — kY, and these quantities, since they appear in
the values of (¢ — x) and (n — y) for all the images on the plate,
may be supposed to be incorporated in the undetermined
constants ¢ and f of equations (29). When — kX and — kY are
omitted from (40) and (41) the remaining terms express the
values of (¢ — x) and (y — y) for the differential refraction; these
equations are then of the linear form
f—z=az+by ... (42),
n—y=dr+ey ... (43),
in which, for example, a = k (1 + X32),
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The coefficients a, b, d and e can be calculated if necessary. It
is sufficient to consider the values of X and Y at the middle of the
exposure. Let the sidereal time then be S. Then as PZ is the
observer’s meridian (Fig. 111), the hour angle of the equinox
T is equal to the right ascension of any point that lies on the
observer’s meridian PZ; in particular, the right ascension of Z
is 8. Also PZ = 90° — ¢, where ¢ is the latitude, so that re-
garding Z as a particular point on the celestial sphere, its
declination is ¢. We now apply the formulae (17), (18) and (20).
Let @ be defined by

cot Q) = cot ¢ cos (S — A) cens..(44);

then Y=tan(@-D) ... (45),
cos @ tan (S — A)

ey (46).

The value of k being known—it is 58-2sin 1" in circular
measure—we can then deduce the values of a, b, 4 and ¢ in (42)
and (43). In practice this calculation is hardly ever necessary,
for it is sufficient to know that the differences between the
standard co-ordinates and the corresponding co-ordinates of
the image (as affected by refraction) are given with sufficient
accuracy, as a general rule, by linear expressions in # and y with
small coefficients a, b, ete.

However, when the altitude of the celestial region to be
photographed is less than 30° or so, the simple formula (30) for
the refraction is not sufficiently accurate; also the omission of
quadratic terms can no longer be justified. Assuming that the
refraction R is given by

R = Atan Z8' + B tan® ZS’

[see formulae (29) and (30) of Chapter 1] and taking account of
second order terms, we can write the formulae for (£ — z) and
(p — y) as follows:

§—z=ax+ By +gz"+ hay + ky?,

n—y=yx+ 8y + lx? + may + ny?.
These give the effect of differential refraction on the standard
co-ordinates. The coefficients a, B, ... m, n are expressible in
terms of A and B and the co-ordinates X and Y of the zenith.
In practice, their values are derived without considering the
theoretical formulae by which they can be expressed.
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168. Aberration.

The investigation of the effect of aberration on the standard
co-ordinates of a star is very similar to that in the previous
section. From Chapter viI1, we know that if F is the position on
the celestial sphere towards which the earth is moving at the
time of the observation, the position of a star is displaced from
its true position S to a position 8’ on the great circle arc SF,
S’ being nearer to ¥ than §. The displacement §S” is given by

S8 =«xsin F§ ... (47),

where « is the aberration constant whose value in circular
measure is 205 sin 1. Confining ourselves to the effects of
aberration only, we write, as before, £ and % for the standard
co-ordinates of a star and = and y for the co-ordinates of its
image on the photographic plate. F'is, of course, a definite point
on the celestial sphere; we shall suppose that its projection on
the tangent plane is W;, with co-ordinates U and V. We shall
also suppose that F, U and V correspond simply to the time of
the middle of the exposure. Following the procedure of the
previous section, we have the formulae corresponding to (32)

and (33), (U —¢) .
A§ = - *'T—n;r s1n FS ...... (48),
&V —m)
== sin¥8 ... (49),
and from (36) and (38),
. AW, Ut+ TV
sin FS = C,‘Wl (1 - TW}'z* ) ...... (50),
U¢+ Vo
TWI—AWl(l T )
sin FS 1
so that Tw, = G,
Now CWir=14 U?+ V3
We accordingly obtain
S <t (51)
(I+ U2t V2T (14 g ™™ ’
An= <7 . (52).

(Lt Uy VT (U Uy TRk
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As in the previous section, we can write x for ¢ and y for %
without any sensible loss of accuracy on the right-hand sides of
(51) and (52); also we extract the constant terms (independent
of ¢ and 7) on the right of these equations. We then obtain the
expressions for differential aberration in the form

E—-x=aq2 ... (53),

n—-y=dy ... (54),
in which @, and d, are small (they have as a common factor
20-5 sin 1", which is of the order 10~4). Again it is unnecessary,
as a rule, to calculate the values of a, and d, from their theoretical
expressions.

167. The general relations between standard co-ordinates and
measured co-ordinates. (Turner’s method.)

From the previous three sections we have seen that refraction,
aberration and the instrumental errors taken separately produce
in each co-ordinate a displacement of the image of a star on
the plate from the position corresponding to the standard
co-ordinates of the star, and that this displacement is given,
generally with sufficient accuracy, as a linear expression in the
co-ordinates. If we combine all the various effects we clearly
obtain linear formulae for (¢ — ) and (n» — y), which we can
write in the general forms

(—x=ax+by+c .. (55),

n—y=dert+ey+f ... (56),
where £, n are the standard co-ordinates of the star and z, y are
the measured co-ordinates of its image on the plate. In these
equations a, b, etc. are small and dependent, in a composite way,
on the instrumental errors, on refraction and on aberration.
Thus in general z differs from ¢ by a small quantity and we can
write the equations, without loss of accuracy, in an alternative
form, namely,

E—zxz=af+bnp+c ... (57),

n—y=dé+en+f L. (58),
in which the quantities a, b, etc. are small. These quantities are
called the plate constants. We shall now consider three practical
applications: (i) the measurement of astrographic plates, {ii) the
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measurement of proper motions, (iii) the measurement of stellar
parallaxes.

168. The measurement of astrographic plates.

The precise determination of the right ascensions and de-
clinations of stars brighter than about magnitude 9 can be
made directly from meridian observations. Beyond this mag-
nitude the stars are too faint to be observed, owing to the
illumination necessary to show up the wires of the instrument.
Actually, of course, the observation with this instrument (if it
were practicable) of the multitudinous faint stars would be
utterly beyond the astronomical resources of the world’s
observatories even if they were increased a thousandfold in
number and employed solely for this purpose. Amongst the
different investigations to which the photographic telescope is
applied, the study of the positions of the stars is the one to
which we first turn our attention.

We shall now suppose that a photograph has been taken of a
region, the co-ordinates 4, D of whose centre are known, and
that a system of réseau lines has been impressed on the plate.
With the measuring machine the co-ordinates x and y (with
reference to the two central lines regarded as the axes of co-
ordinates on the plate) of every stellar image can be derived.
As the standard co-ordinates £ and 7 are defined in terms of the
focal length as unit of length, we shall suppose that x and y are
defined in terms of the same unit; thus if the x-measure of an
image on the plate is found to be p mm and if f is the focal
length in millimetres, we have z = p/f.

Having regard to the size of the astrographic field (2° x 2°),
we can take it as certain that any plate will contain the images of
several stars whose right ascensions and declinations are known
from meridian circle observations. Suppose for the moment that
there are three such stars. Then by (18) and (20) the standard
co-ordinates of these stars, which we shall designate reference
stars, can be caleulated. The measured co-ordinates of the images
of the reference stars are also known. Then from (55) we have

f—wi=an+ by, +c
Ex—Ty=ax, + by, + ¢ eeeese(59),
£y — Ty=axy+ by, + ¢
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in which the suffixes 1, 2, 3 refer to the three stars. These three
equations are sufficient to determine the three plate constants
a, b and ¢. For any other star we have

E—zxz=ax+ by + ¢,

and, as x and y are known from the measures of the image and
the values of @, & and ¢ have now been determined, we are
therefore able to calculate the value of £—the standard ¢-
co-ordinate of the star in question. In a similar way 7 is ob-
tained, the values of the plate constants d, e and f having been
calculated by means of the three reference stars. If it is desired,
the calculation of the right ascension & and of the declination 8
of this star can be carried out by means of (23) and (21). Actually
the standard co-ordinates ¢ and % of the star define its position
uniquely with reference to the centre of the region (4, D) and,
except for special objects, the calculation of the equatorial
co-ordinates ¢ and & need not be undertaken.

In practice, more than three stars are chosen as reference
stars. If there are N such stars, we shall have N equations of
the form shown in (59). The constants a, b and ¢ are then derived
from a solution of the N equations according to the method of
least squares (or an analogous process). This applies also to the
~ determination of the plate constants d, e and f.

Our treatment of standard co-ordinates, immediately above,
is not complete without further reference to the epoch to which
they refer. The epoch chosen for the standard co-ordinates of
star-places in the astrographic catalogue is 1900-0. Let us
suppose that a plate was taken on 1904 March 4. For the epoch
1900-0, the standard co-ordinates of the reference stars can be
found from the catalogues. The reduction of the measured
co-ordinates of any other star leads to the standard co-ordinates,
referred to the mean equator of 1900-0, of the star’s position in
the sky on the date 1904 March 4. If the proper motion and
parallax of the star are negligible, the standard co-ordinates so
obtained define the position of the star for the epoch 1900-0.
The measured co-ordinates z and y of any one of the reference
stars will contain the components u, and p, of proper motion,
corresponding to the interval 1900-0 to 1904 March 4. (We
denote by p, the component of proper motion along the {-axis
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and by p, the component along the n-axis; thus u, = p, cos$
and p, = ps, all the quantities concerned being expressed in
circular measure.) If y, and p, are known, the eifects of u, and
py ought strictly to be removed from the values of z and y
before the solution for the plate constants is made.

169. Photographic observations of minor planets and comets.

We shall suppose that a photograph of a minor planet (the
general procedure is applicable also to comets) is taken at an
instant ¢ on a given date—in practice ¢ is taken to be the time
corresponding to the middle of the exposure. If we define the
standard co-ordinates of selected reference stars with reference
to the mean equator and equinox of a standard epoch, say
1950-0, the measurement of the planet’s image on the photo-
graphic plate and the subsequent reduction, as indicated in
section 168, will give the position of the image referred to the
mean equator and equinox of the same chosen epoch. It is to be
remembered that the reduction automatically removes, in
particular, the effects of annual aberration at the date in
question. The reduced co-ordinates include the effect of the
planet’s parallax, which depends on the observer’s position on
the earth. When this effect has been removed, the resulting
co-ordinates are called astrometric co-ordinates.

The Astronomical Ephemeris gives the astrometric positions
of the four brightest of the minor planets. The differences
between the apparent and the astrometric co-ordinates are also
given. We should observe that apparent co-ordinates are readily
derived from meridian observations, while the astrometric
position is obtained from photographic plate measurements.

The theory of planetary motions yields the geometric position
of a body; this is derived from its astrometric position (i) by
adding the effects of annual aberration,

Cc +Dd in R.A,,
Cc¢’ + Dd’  in declination

{formulae (25) and (26), p. 184], and (ii) by ante-dating the
observed time ¢ of observation by 7, the interval required by
light to travel from the planet to the earth (section 112).
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170. The measurement of proper motions.

For the accurate determination of proper motions an adequate
interval 1" between the two epochs of observation is necessary.
Let us suppose that a region of the sky is photographed on
1904 March 4 and again on 1926 April 3. We can then take the
interval 7' to be 22-1 years. After the measures have been re-
duced, according to the method of section 168, the first plate will
give the standard co-ordinates ¢, n; (with reference to the mean
equator for 1900-0 and to a definite central point with equatorial
co-ordinates A and D for this epoch) of the position of a star X
in the sky on 1904 March 4. If ay, », are the measured co-
ordinates of its image on the first plate, we have

L—xy=aqr;+ by +¢, el (60),
in which a,, b, and ¢, are the constants of this plate, determined
from a suitable number of reference stars. Now suppose that
the second plate has been measured in a similar way. (We are
assuming that a réseau system of lines has been impressed on
each plate.) Generally, the constants of the second plate will
be different from the constants of the earlier plate; let their
values, determined from the reference stars, be a,, b, and c¢,.
Let z,, y, be the measured co-ordinates of the image of the star X
on the second plate; let &,, , denote the standard co-ordinates
(with reference to the mean equator for 1900-0 and to the same
central point of the region) of the position of X in the sky on
1926 April 3. Then

Lo — Ty =ty + by + ¢ el (61).
If the star has no proper motion, &, and ¢, will clearly be the
same. If the star has a proper motion with components p, and
¢, per annum, then, since the difference between §, and £, is the
displacement (parallel to the ¢-axis) due to proper motion in
T years, we have b b= Tue e (62).

Similarly, m—m=Tu, . (63).
The values of ¢, &, n, and 7, are obtained from (60) and (G1)
and the corresponding equations in 7. Thus the values of u, and
g, are found from (62) and (63).

It is to be noticed that in these formulae the unit in which
@ and p, are expressed is the same as that by which standard
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co-ordinates are defined. In practice, it is much more convenient
to express the standard co-ordinates either in millimetres or in
terms of the micrometer scale unit, or in minutes or seconds
of arc. If we suppose that £, 7, x and y are all expressed in
seconds of arc, we obtain the values of p, and u, expressed in
the familiar way, that is, in seconds of arc per annum. Then g,
is the same as yu; (the proper motion in declination) and p, is
Ha cos 8, where 3 is the star’s declination and p. is the proper
motion (in seconds of arc) along the equator.

Instead of using the linear formulae (60) and (61) it may be
necessary to include the quadratic terms mentioned at the end
of section 165. From the equations of a sufficient number of
reference stars the individual constants of the formulae for
(¢ — x) and (7 — y) are derived.

171. The measurement of proper motions (Kapteyn’s method).

The method just described involves the use of réseau lines
as intermediate axes of reference. For each plate, the measure
of a co-ordinate x or y of an image requires a setting of the
micrometer wire or scale on a neighbouring réseau line and then
a setting on the image. For the second plate the procedure is the
same. In the method often
adopted in practice the work Y
of measuring is reduced by 'l
half by eliminating the ré- I A M

I WY
seau system altogether. We ° " .
|
|
}

shall first consider the plan M,
suggested by Kapteyn, as
the principle involved is [-__———~__= T-————— X
most clearly seen in this ap- |
plication. A plate on which * :
an exposure has been made ° (
is not developed, but is care- * "

|

1

° [ ]
.
Dec. ~—»

fully stored. After a suitable
interval of time, 7, has
elapsed the plate is again
placed in the telescope and
a new exposure made of the same region. To prevent the earlier
and the later images of the same star from coinciding or over-

RA —
Fig. 112.
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lapping, the plate-carrier is given a small displacement per-
pendicular to the optical axis. The plate is developed after the
later exposure. Each star is represented by two images, one
corresponding to the earlier epoch and the other to the later.
Fig. 112 illustrates this result; we shall suppose that the larger
dot at A represents the image of a particular star at the earlier
epoch, say, 1900 and the smaller dot the image at the second
epoch, say, 1920. If, at the earlier exposure, a bright star is
allowed to register a trail across the plate (this is effected by
stopping the driving mechanism of the telescope) the trail will
define with sufficient accuracy the £-axis; by means of the trail
theplatecan then be oriented correctlyin the measuring machine.
The procedure consists in measuring the components, M, and
M,, of the displacement between the 1900 and 1920 images.
Referred to hypothetical axes on the plate (represented by broken
lines in Fig. 112) we shall have, using (57), for the image of 4
corresponding to the position of the star in 1900,

—m=a&+bm+te (64),
and, for its image in 1920,
& — = a,éy + bz7)z +C (65).

(We cannot assume that a, = a,, etc., because the effects of
refraction and aberration and the orientation of the plate, for
example, are hardly likely to be identical in 1900 and in 1920.)
The differences between the standard co-ordinates in 1900 and
1920 will be small—the differences are simply the effects of
proper motion in the interval—and as a,, b, are small, we can
replace ¢, and 7, by ¢ and 75, on the right of (65) without
sensible error and thus obtain

§2 — Xy = a2§l + bg?]l + Cg  sieese (66).

From (64) and (66) we have by subtraction

- b1=T— T+ (@ — @) &1+ (b — b))+ (cp — ¢y)...(67).
In this equation, ¢, — ¢, = Tu, and (x, — z;) is simply the
measured displacement M,. Also we can replace ¢, by 2, and
n, by y, on the right of (67) without altering the linear character
of the equation. We thus have the general expression for 7', in
the form Tus= M, + ax, + by, + ¢ veees.(68).
There is a similar equation giving T'u,.
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The plate constants a, b and ¢ in (68) are determined by means
of several stars—the comparison stars—scattered over the plate,
whose proper motions are presumed to be small; faint stars are
more likely to satisfy this condition than the brighter stars. If
we assume that the proper motions of all the comparison stars
are zero, then to each of these stars corresponds an equation of
the type ar 4+ by +c b M,y =0 e {69),
where a, 4 are the measured co-ordinutes of the star. The values
of x, ¥ need not be determined with great accuracy. as their
fuctors o and b respectively are small quantities. If there are
N comparison stars the solution of the N equations of the type
(69) by the method of least squares vields the appropriate values
of the plate constants a, b and c. A similar procedure is adopted
for the &V equations of the form

dz + ey + f+ M, =0,
The substitution of the values of @, & and ¢ in the general for-
mula (68) gives for any other star the component g, of the proper
motion. The value of p, is obtained similarly.

We have assumed that the proper motions of all the com-
parison stars are zero; by substituting the values of a, b and ¢
appropriate to any comparison star in the equation (68), we can
rcadily see how satisfactory (or otherwise) this assumption
really is, for by this process we effectively determine the value
of p, for each of the comparison stars. If it should prove that a
comparison star has an appreciably large proper motion, it must
be dizearded and another star selected, if possible. This entails a
new calculation of the plate constants. Actually, all the com-
parizon stars cannot be expected to have zero proper motions;
and the derived values of g, and g, for the stars in general are
the values of their relative proper motions, thut is, relative to the
mean motion of the group of comparison stars.

172. The reduction of relative to absolute proper motions.

The proper motions of stars derived from meridian circle
observations are absolute proper motions. Suppose that there is
one star on the plate whose absolute proper motions 1, and g,/
are known; the plate measures give the relative proper motions
pg and g, Then g’ — p, and @, — g, are the corrections to be
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applied to all the relative proper motions to convert them into
absolute proper motions. Meridian proper motions are generally
not so accurate as one would wish, and therefore the above
correction can only be obtained with sufficient accuracy if there
are at least about ten stars with well-determined proper motions.
This 1s a condition that is hardly likely to be fulfilled in general
and cousequently another method of deriving the correction
has to be adopted.

We have seen on p. 263 that the components P, and P; of
parallactic motion, in seconds of arc per annum, are given by

P, = I sinAsin ysecd,
Ps; = HsinAcosy,

in which 7 is the secular parallax of the star, X is its angular
distance from the ant-apex of the solar motion and y is the
position angle of the ant-apex with reference to the star. Writing
P, for P, cos 8 and P, for P; and denoting by #/,, the secular
parallax of a star of magnitude m, we have

P, =1, snAsiny e (70),
P,=71_ sinAcosy ... (71).

For the sturs in a photographic region we can take the average
values of A and x to be the values at the centre of the plate.
Consider a group of stars, .V in number, all of magnitude m.
Each star will have its own random motion in space but, as it is
observed relative to the sun, there will be superimposed the
parallactic motion. The observed proper motion will thus consist
of the effects of the random motion and of the parallactic motion.
Adding up all these effects for the .V stars, the effects of the
random motions on the proper motions will tend to cancel out,
leaving N times the parallactic motion of a star of magnitude m
(at the mean distance of the stars in the group) in the region of
the sky concerned. Thus taking the average for the N stars, the
components of their mean absolute proper motion ought to be
very nearly the values of P, and P, in (70) and (71). Let a,, g,
denote the average values of the relative proper motions of the
N stars as obtained from the measurement of the photographic
plate. The corrections which we must apply to the components
of the relative proper motions of all the stars photographed in
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order to convert the relative proper motions into absolute proper
motions is evidently given by the gquantities

Pz"ﬁz and Pv_ﬁv-
In practice several magnitude groups are formed and the
weighted mean of the corrections derived from the several groups
is taken as the final correction to be applied. The following
table* illustrates the method. The centre of the photographic
region is the star € Cygni; the values of A and y are 147° and 102°
respectively; then by (70),

P, = 0-53H,,.

The values of H,, are Kapteyn’s values corresponding to the
galactic latitude of € Cygni which is — 6°.

Mag- No.of
nitude stars
Group m N H, P, NP, N, N(P,— i,
1 81 7 070234 + 0701242 + 07-087 + 07-049 + 07038
2 9-2 11 07-0163 + 07-00865 + 07-095 + 07065 + 07030
3 95 20 070147 + 07-00780  + 0”:156 + 07035 + 07121
4 97 11 07-0138 + 0700733 + 07-080 + 07072 + 07-008

49 + 07197
The correction to be applied to all the components p, of relative
proper motion to convert them into absolute proper motion is
thus + 0"-197 = 49 or + 0'"-004. The correction to be applied to
the components p, is obtained in a similar way.

173. The film-to-film method of measuring proper motions.

Kapteyn’s method of measuring proper motions, which we
have described in section 171, suffers from several disadvantages,
amongst which we mention the following: the photographic film
is likely to deteriorate during the rather long interval between
the early and late exposures, in which event the images of the
later exposure will fall below the standard of quality expected in
precise work of this kind ; the images of the early exposure may
be of poor quality owing to bad atmospherical conditions or
indifferent ‘“guiding” during the exposure, and this state of
affairs is not brought to light until many years later. The
method now commonly adopted is as follows. The photograph
at the earlier epoch is taken in the usual way and, after a star has

* Cambridge Asironomical Observations, vol. xxv1, p. 18 (1928).



ASTRONOMICAL PHOTOGRAPHY 307

been allowed to register its trail, the plate is developed at once.
If the plate is unsatisfactory another can be taken to replace it.
After a suitable interval has elapsed, a photograph is again taken
of the region, but in this case the plate is placed in its carrier
with its film-side away from the object-glass. The stellar images
are consequently made by the starlight after its passage through
the glass of the plate. The plate—we shall call it the “reversed”’
plate—is developed in the usual way. The plate of the earlier
epoch and the reversed plate are now bound together, film to
film, by clips allowing for a small displacement of the pairs of
images of the several stars. The appearance of the double
images is then similar to that in Kapteyn’s method as illustrated
in Fig. 112. The superposition of the plates must be done with as
little rotation of one plate relative to the other as possible. The
measurement of the images and the derivation of the proper
motions follow the same course as in Kapteyn's method.
In practice, several plates are generally exposed on each region
at each epoch and at least two separate exposures made on each
plate. The material is then adequate to give precise values of the
relative proper motions.

174. The determination of the plate constants by the method of
Christie and Dyson.

We shall write equation (68) in the simple form
ax+by+c=M-p ... (72),

in which p is the quantity T'u, and the suffix in M, has been
dropped. This equation holds strictly for every star in the region.
In order to determine the plate constants by the simple method*
proposed by Christie and Dyson, the comparison stars are
selected in four equal groups, according to quadrants on the
plate, so that the mean centres of position of the groups are as
nearly symmetrical about the centre as possible. Assume that
the co-ordinates of the group-centres are as in Fig. 113 and that
there are N stars in each group.

The values of p in (72) are of course unknown. Let us assume,
however, that the selected comparison stars have small relative
proper motions, for example, less than 07-02 per annum,

* Monthly Notices, R.A.8. vol. Lv, p. 61,
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A preliminary solution shows up stars which do not fulfil this
condition; they can be removed from the appropriate groups
and replaced by others.
Adding the N equations (72) |(1) i
for the comparison stars in . : .
group 1, we have X,+Y) : +X,*Y)
1
|

N(—aX+bY+c)=Zp—SM
1 1

in which Zp denotes the sum
1

N
o

[}

]

|

|

|

[}

]

1
Y
i

|

i

|

|

|

1
Dee. ———>

to the x-axis) of the N stars in
group 1 and =M denotes the |{(8)
1

n
!
|
of the proper motions (parallel | {X,-¥) : tX.-Y)
]
!
!

sum of the measured displace-
ments between pairs of images
of the N stars. We have similarly, for the other groups,

Fig. 113.

N+aX+bY+e)=Zp-IM ... (74),
2 2

N(—aX—-bY+e)=Zp—-ZM ... (75),
3 3

NHaX-bY +ce)=Zp-EM ... (76).
4 4

Add (73) and (75); then
—2NaX + 2Nc=Sp+Sp—S M-S M .....(T7).
Add (74) and (76); then = °
+2NaX+2Nc=§23p+§lp——§‘M——§M ...... {78).

Subtracting (77) from (78) we obtain
dNa X =Zp—-Zp+Zp-Zp+ EM-ZM+ZEM - M}
2 1 4 3 1 2 3 4

Slmﬂa,rly L e (79).
AINBY =(Zp+2p-Zp-Zp-EM+EM—-Z M-I M}
1 2 3 4 1 9 3 4
...... (80),
4N¢ ={Zp+Zp+Zp+Xp}-EM+EM+IM+3 M}
1 2 3 4 1 9 3 N
...... (81).

In these equations N, X, Y and T M,... X M are known and
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the plate constants a, b and ¢ are now derived on the assumption
that Sp-Sp+Sp—Sp=0,

P 1 4 3
Tp+Zp-Zp—-ITp=0,
1 2 3 4
Zp+Zp+Zp+Zp=0,
1 2 3 4
from which Zp=Xp; Zp=Zp;, Zp=—-2Zp.
1 4 2 3 1 2

In a group of N stars, some values of p may be expected to be
positive and some negative; the value of X p, for example, con-
1

sequently may be expected to be small and it will be practically
negligible in comparison with the other quantities on the right
of (79), ... (81). The third assumption mentioned above-—that
21} P+ % P+ %‘. P+ % p = 0—is simply another way of expressing

the fact that the proper motiouns derived in this way are relative
proper motions. They can be converted into absolute proper
motions by the method already described in section 172. A
similar procedure is adopted for the components parallel to the
y-axis. The values of the plate constants derived by this method
are little inferior in accuracy to the values obtained by the
rigorous, but more lengthy, method of least squares.

175. The measurement of stellar parallazes.

In Chapter 1x we have derived the displacements, in right
ascension and declination, of a star due to parallax. We consider
here only the displacerent in right ascension, measures of which
alone suffice in practice. If a, 8 are the heliocentric right
ascension and declination of a star whose parallax II is to be
measured, and «, is the right ascension as viewed from the earth
on a particular date T, then by (67), p. 222, we have

o —a=1IlF;secd ... (82),

in which F, is the parallax factor, the value of which can be
calculated as the quantities on which it depends are all known.
At a later date T, the heliocentric right ascension of the star
will have increased owing to proper motion to a + T'u., T being
the interval (expressed in terms of the year as unit) between T,
and 7, and pu, being the proper motion in right ascension. If
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a, is the geocentric right ascension at the date 7, and F, the
corresponding parallax factor, we shall have
g — {a+ Tup,)=Fysecd ... (83).
From (82) and (83),
g — oy =11 (Fy— Fy)secd+ Tp, ...... (84).
Let £,, n, be the standard co-ordinates (with reference to the
centre of the region whose equatorial co-ordinates are A, D)
corresponding to the geocentric co-ordinates ¢, 8, of the parallax
star, and &,, n, the standard co-ordinates corresponding to ,, 8,.

Then by (23),
tan (¢, — 4) = _bisecD
l1—ntanD

As the parallax star is always chosen to be near the centre of the
region, so that £, 7, are very small and D differs hardly at all
from 3§, or 8, we can write, with all necessary accuracy,

a, — A = £ secd.
Similarly, o, — A = £, secd.
Hence g —ay = (& — &)secd ...l (85).

Denote the proper motion along the parallel of declination & by
Pz then p, = p, cos 8 or p, = p,sec 8. Inserting this value of
ta in (84) and using (85) we have

&—E =T (Fy—F) + Tpe  eeueen (86).

Now let z,, ¥, be the co-ordinates of the image with respect to
rectangular axes on the plate taken on the date 7', ; then by (57),

L — = a6 + bym + ¢;.
Similarly, b — = a5 + by + .

Since &, differs very little from £, the difference being due to
parallax and proper motion, and as either differs little from
x,, Yy, we can write the difference between these two equations

in the form & — & =2 — z, + ax, + by, + c.

In practice the difference (z, — z,) between a pair of images of
the parallax star is measured ; denote it by M, ; then making use
of (86) we obtain

NEF,—-F)+Tpu, =M. +ax+by+c ... (87),
on the right of which we have dropped the subscripts in z, and ¥, .
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The plate constants a, b and ¢ are derived from the measures
of several faint stars, whose parallaxes and proper motions may
be regarded as negligible. Each comparison star thus contributes
an equation of the type

ax+by+ec+ M, =0 ... (88).

The co-ordinates x, y of the comparison stars are supposed
known. The solution of the several equations (88) gives the
values of a, b and c.

Generally, the parallax star is chosen as the origin of the x
and y co-ordinate axes, so that for this star x = y = 0 and (87)

becomes OF,—F)+ Tpy=M,+¢ ... (89).

This equation, derived from the measurement of a pair of plates
taken on dates T, and T, such that the quantity ¥, — F| is as
large as possible, contains two unknowns, the parallax IT and
the component p, of proper motion (strictly, relative to the mean
motion of the group of comparison stars).

Several other pairs of plates (perhaps ten in number) provide
a corresponding number of equations of the type (89); these
equations, when solved by the method of least squares, give
the values of If and p,. In practice M, and ¢ are found in terms
of the unit of the micrometer attached to the measuring
machine; thus by (89), IT and p, are found in terms of this unit.
They are converted into seconds of arc by means of the known
equivalent of the micrometer unit. [See also p. 411.]

Several methods are employed to obtain the measures M,
between the pairs of images of the parallax and comparison stars.
Kapteyn’s method, similar in principle to that described for the
measurement of proper motions (section 171), has been tried.
A second method, adopted at the Royal Greenwich Observatory,
depends on the use of reference lines and the principle is the same
as if a system of réseau lines were marked on each plate. In
some observatories a special kind of measuring machine—the
stereo-comparator—enables the measurement of the quantities
M, to be made without the use of any intermediary lines of
reference. This instrument is also used for the measurement of
proper motions.

As an example, the measures of two pairs of plates, by Dr van
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Maanen at Mt Wilson Observatory, of the star ‘“Boss 3650
and other relevant details are summarised in the table below:

Plate Parallax

no. Date factor ¥ P, — Fy T M, +c
136 1914 June 15 —0-73

470 1915Feb.6  + 0-91} tlet 06 - 3l

486 1915 Feb. 7 + 0-90)

e Y . 15
555 1915 June 4 — 0-60§ 150 032 150

The last column contains the values of M, + ¢ in terms of the
measuring-machine unit; one unit = 0"-001649. The first pair of
plates gives the equation

+ 1-64 11 + 0-64p, = — 31,
and the second pair gives
~1-50 IT + 0-32 p, = — 150,

Eliminating p,, we obtain II = + 58; we then obtain p, = — 197.
Multiplying these numbers by 0-001649, we find

1=+ 07095,
pp = — 07315,
From the measures of six pairs of plates, van Maanen found
I1= 407096  0"-003,
pte = — 07302 £ 0"-008.

Here 0096 is the most probable value of Il derived from the
measures; + 0-003 is the probable error which indicates the
degree of precision with which the value of II has been obtained.
Having regard to the inevitable errors of measurement and the
like, we interpret the complete result for II by saying that the
probability that the true value of II lies between the limits
0'7-096 + 0’003 and 0''-096 — 0'':003, that is between 0’’-099
and 0'"-093, is equal to the probability that it lies outside these
limits. The probable error given above is, in fact, 0:6745 times
the more usually quoted standard error.

All the methods considered above are based on the use of
standard co-ordinates. While these co-ordinates illustrate well
the geometrical nature of the problem of imaging part of the
celestial sphere on to a flat photographic surface, they are
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usually dispensed with in modern astrometric techniques which
depend heavily on computer methods. As we have already
mentioned, these techniques are too specialised to be considered
here, but it should be recognised that some of the methods
described in this chapter are now mainly of historical interest.
These methods still illustrate, however, the basic principles
involved, and they still have considerable relevance in particular
problems, such as the immediate determination of the position
of a newly discovered asteroid or comet so that a preliminary
orbit can be quickly derived.

EXERCISES

1. Two plates are centred at P and @ and (z, 0) and (¢, 0) are the corre-
sponding standard co-ordinates of a star whose image appears on each plate,
Prove that ‘e ( +¢)

1—cz’
where ¢ is the ¢.co-ordinate of P with respect to the plate centred at Q.
[The = and ¢ axes are the projections on the respective plates of the great
circle PQ.] [Lond. 1930.]

2. Show that, to a first approximation, the trail of a star of declination 3 on

a photographic plate is y = const. + 322 tan 5,

and that the projection of a meridian distant Aa from the central meridian

makes with the latter the angle tan—! (tan Aa sin D), where D is the declination
of the plate-centre.

8. A photographic plate has been taken of a region of the sky containing a
comet and a number of field stars whose proper motion components and whose
mean equatorial co-ordinates for 1950-0 are known. Describe in detail how the
right ascension and declination of the comet may be determined from measure-
ment of this photographic plate. Would these co-ordinates differ from those
determined by transit instrument measurements, and if so what are the causes
of these differences? [Glas. 1973.]



CHAPTER XIII
DETERMINATION OF POSITION AT SEA

176. The sextant.

In this chapter we shall consider the problem of determining
a ship’s position at sea from observations of heavenly bodies. The
instrument used is the sextant, by means of which the altitude of
a heavenly body above the sea-horizon can be measured. Fig.114
is a diagram embodying the more important features of the

Horizon

Graduated
Arc

Fig. 114.

instrument. I (called the ¢ndex-glass) represents a mirror per-
pendicular to the plane of the paper. Rigidly attached to the
index-glass is an arm IP. The index-glass and the arm IP can
rotate about an axis (perpendicular to the plane of the paper)
at I. The centre of rotation at I is also the centre of a graduated
arc OP. To any given position of the index-glass and of the arm
IP corresponds a reading on the graduated arc. H is a small
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rectangular piece of glass, fixed to the framework of the instru-
ment and perpendicular to the plane of the paper; the upper half
of its surface is clear and the lower half is silvered, the latter
acting as a mirror. T is a small telescope attached to the frame-
work. To find the altitude of a star (for example) above the sea-
horizon, the observer holds the instrument in a vertical plane
and points the telescope so as to see the horizon through the
upper half of H (called the horizon-glass). He then moves the
index-glass I by means of the arm IP until the image of the star
appears in the field of view. When the image appears on the line
of the horizon, he notes the reading on the graduated arc.

Let 18 denote the direction of the star. A ray in the direction
81 is reflected by the mirror I along IH; it is then reflected by
the mirror portion of the horizon-glass I along HT, and the
star is thus observed in the telescope in the direction in which
the sea-horizon is seen. The altitude of the star is simply related
to the inclination of the index-glass I to the horizon-glass H

—in Fig. 114 the inclination is I DH, which we denote by z. Let

AIBand HB be the normals to the mirrors I and H ; then I BHis
evidently z. The laws of reflection give

Sfa=AlH =6,
and IHB = BHC = 4.
If a is the star’s altitude above the sea-horizon, then SCH = a.
From the triangle IHC, the exterior angle SIH = I CH + 14C,

so that W=26+a e ).
Similarly, from the triangle IBH,

0=¢+ 2 eeenn(2).
Hence from (1) and (2), a=2%2 (3),

or the star’s altitude is twice the angle between the mirrors I and
H (or between their normals). The altitude a is zero when z is
zero, that is, when the mirrors I and H are parallel. In Fig. 114,
IO is parallel to the fixed direction HD; O is the zero-point of
the scale. The angle OIP can thus be found from the reading on
the graduated arc and, by (3), the star’s altitude is twice this
angle. The arc of the sextant is generally about one-sixth of the
circumference of a circle (hence the name “sextant ’’), butinstead
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of having 60 divisions each representing one degree, the arc is
divided into 120 divisions. In this way, the altitude is read
directly from the scale without the necessity of applying the
factor 2 of equation (3). With the aid of sub-divisions and a
vernier, altitudes can be read with a first-class instrument to
one-tenth of a minute of are.

177. The errors of a sextant.

In this section we shall mention very briefly the errors* to
which a sextant is liable.

(i) Error of perpendicularity. The index-glass I ought to be
perpendicular to the plane of the graduated arc. (ii) Side error.
The horizon-glass H ought to be perpendicular to the plane of
the graduated arc. Errors (i) and (ii) can be removed by means
of appropriate screws at I and H. (iii) Collimation error. The
line of collimation of the telescope ought to be parallel to the
plane of the arc. (iv) Index error. When I is parallel to H the
pointer P ought to indicate 0° on the graduated arc. Itis possible
to remove the index error by means of a screw at H, but the
usual custom is to determine the reading when I and H are
parallel and to apply the appropriate correction to all altitude
readings. The condition of parallelism of I and H is achieved
most simply as follows (we assume that errors (i) and (ii) have
first been eliminated). With the pointer set near 0°, the telescope
is pointed to a star. Two images of the star are then in the field
of view; one is the direct image of the star as seen through the
upper half of the horizon-glass H and the other is the image
formed as the result of the reflections at I and H. With a slow-
motion screw, the two images can be superimposed and the
reading on the arc then corresponds to the position of I when it
is parallel to H. As the instrument is not likely to be indefinitely
in proper adjustment, the index error should be determined at
frequent intervals. (v) Centering error. The pivot about which
the arm I P revolves ought to be the centre of the graduated arc.
In the best instruments this error is generally very small; it
varies according to the particular position of the arm IP. In

* For the practical methods of eliminating or determining the errors, the reader
is referred to more detailed treatises, e.g. 7he Admirally Manual of Navigation and
Doolittle’s Practical Astronomy as applied to Geodesy and Navi;ation,
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Great Britain, sextants are tested at the National Physical
Laboratory before being put on the market, and the values of
the centering errors determined there are noted on the sextant
box.

178. Corrections to the observed altitude.

(i} Dip of the horizon. In making an observation, the ob-
server’s eye is at some distance above sea-level, and consequently
the visible horizon will appear somewhat depressed below the
horizontal plane, that is, the plane perpendicular to the direction
of the observer’s zenith. Thus the zenith distance of the visible
horizon will be a little over 90°, and all altitudes measured from
the visible or sea-horizon will require correction. In Fig. 115let

To
Star

<
\\\
~
Y
~
O jubu,o B

Fig. 115.

COZ be the direction of the zenith of an observer at O at a height
h feet above sea-level. Consider the vertical plane ZOA con-
taining the direction of the star observed. Let OH be perpen-
dicular to OZ in this plane. Let 4 be the point of the sea-surface
corresponding to the visible horizon. Owing to atmospherical
refraction the path of a ray from 4 to O will be slightly curved
and the direction in which 4 is actually observed will be along
OV, the tangent at O to the dotted curve representing the path
of the ray. The angle HOV (denoted by 0) is called the dip of the
horizon. As A is the most distant point visible, the path of the
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ray will be tangential to the earth’s surface at A. Consequently
if AT is a tangent at A to the curved path of the ray, AT is
perpendicular to CA. Since % is small compared with the earth’s
radius a, we assume that the curved path is approximately a
circular arc; hence, as OV and AT are tangents to this arc, then

TOA = OAT. Denote OCA by 4. It is usually assumed that
TOA or OAT is a constant fraction of ¢. We can then write
04T =86 ... (4),
where B is a constant numerical factor whose value is deduced
to be 1/13 approximately. We now have: 0AC = 90° — Bd;
AOC =90° — (0 + B#), and hence
— B + 90° — (8 + Bd) + ¢ = 180°,
from which d(1-28=06 ... (5).
The earth’s radius being denoted by a (in feet) we have, from
the triangle 40C,
sin (90° — B4) _sin (90° — 0 — £)
a+h a :
cos B¢ h (6),

or pos (9+B¢_1+E/ ......
2 sin (8/2) sin 1 (6 + 2B4) 7}
cos (6+ B¢> T a
As 0§ and ¢ are small angles, we can write this last equation as

6(6 + 284) = 2h/a,

whence

or, using (5), 02=2(1-2B)hfa ... (7).
Inserting the value of 8 and expressing 8 in minutes of arc, we
have 0= \/g_ZE cosec 1,

13a
Now a = 3960 x 5280 feet and cosec 1’ = 3438. Hence we
obtain f=098 (¥ ... (8),

or, as a sufficiently good working rule: “The dip, in minutes of
arc, is equal to the square root of the height, above sea-level,
in feet”. For example, if the observer’s eye is 36 feet above
sea-level the angle of dip, 6. is practicallv 6'-0.
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As the observed altitude of the heavenly body is measured
with respect to O V—the direction of the sea-horizon—the angle
of dip is to be subtracted from the observed altitude; thus the
altitude with respect to OH—the direction of the theoretical
horizon—is obtained.

(ii) Astronomical refraction. We have seen in Chapter 111 that
the effect of atmospherical refraction is to make the heavenly
body appear nearer the zenith than it would be if the atmosphere
were non-effective in deviating the rays of light in their passage
through the air. The observed altitude is thus too great by the
amount of refraction R given by formula (7) of Chapter 111,

R = ktan {.
(This formula is sufficiently accurate for navigational purposes.)

(i) Semi-diameter (s.0.). In observations of the sun, moon
and the nearer major planets, the altitude of the centre of the
disc cannot be accurately measured directly; the observation
consists in measuring the altitude of the upper or lower limb of
the body concerned, and applying to the observed altitude the
value of the semi-diameter given in the almanacs. In this way,
the altitude of the centre of the sun, moon or planet is derived.

(iv) Parallax. As we have seen in Chapter 1x, the effect of
parallax is to make the observed altitude less than it would be
' if the dimensions of the earth were negligible in comparison with
" the distance of the heavenly body observed. If P denotes the
horizontal parallax of the body and a its altitude (previously
- corrected for dip, refraction and semi-diameter), the correction
due to parallax is given with sufficient accuracy for navigational

purposes by P cosa, which is to be added to the observed
altitude. This correction is important only in the case of the
moon.

When the index error and the corrections (i) to (iv) have been
applied, in the order indicated, to the observed altitude we
obtain, by subtracting this corrected altitude from 90°, the true
zenith distance of the heavenly body.

As regards star observations, only the corrections (i) and (ii)
are of practical moment. In nautical tables,* the sum of these

* For example, Inman's Tables; Bowditch’s Practical Navigator.
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corrections can be taken directly from a simple double-entry
table.

As regards the sun, simple tables have been prepared to enable
the total effect of corrections (i) to (iv) to be found by inspection,

Corrections (iii) and (iv) for the planets are small and in
nautical observations are usually neglected.

Example. To find the true zenith distance of the moon’s centre
at 1931 March 24, 10t U.T.; given A = 25 feet; observed alti-
tude of the moon’s lower limb = 32° 20’-0 (corrected for index
error). From the Nautical Almanac, s.0. = 15"-2; P = 55'-8.

Obs. altitude (a) 32°20-0
Dip - 50
Refraction - 15
Semi-diameter  + 15°-2
Parallax (P cosa) + 470

Hence the corrected altitude = 33° 15'-7
and thus the true zenith distance is 56° 44’-3.

179. The position circle.

An essential part of the navigator’s observation concerns the
exact U.T. at which the observation of altitude was made.
For this purpose a reliable chronometer keeping U.T. as nearly
as possible is necessary. The daily radio time-signals enable the
navigator to determine the error of the chronometer at suitable
intervals; consequently, when he measures the altitude of a
heavenly body he knows the exact U.T. at which the observa-
tion was made. The various corrections in section 178 being
applied, a complete observation yields two definite pieces of
information:

(i) the true zenith distance of the heavenly body,
(ii) the U.T. of the observation.

Now, from the v.T. it is easy to find the position on the earth’s
surface at which the body concerned is exactly overhead at the
moment of observation. Let U be this point in Fig. 116, which
represents the earth with its centre at C. At the moment of
observation the body is thus in the direction CUS. CP is the
direction of the north pole and therefore SCP is the north polar
distance of the heavenly body, that is, the great circle arec PU
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is (90°—¢), in which 8 is the declination of the body at the
U.T. of the observation. But PU is the colatitude of U and
thus the latitude of U is simply the declination of the heavenly
body. Again, if PGQ is the Greenwich meridian, GPU is the
longitude (measured west
of Greenwich) of U. But

6PU is also equal to
the angle between the
celestial meridian of the
heavenly body and the
celestial meridian corre-
sponding to the Green-
wich meridian PGQ. But
this latter angle is simply
the hour angle of the
heavenly body, at the
particular Uv.T., with re-
spect to the Greenwich
meridian. Thus the longi- )
tude of U/ (measured west-
wards) is the hour angle
of the heavenly body at Greenwich at the U.T. concerned. This
hour angle can be calculated from the data in the almanacs.
Accordingly, the position of U on the earth’s surface can be
definitely specified. U is known as the geographical position (or
the sub-solar or sub-stellar point, in the case of the sun or a star
respectively) of the body observed at the particular u.T.
Consider now the observation of altitude from which the true
zenith distance z is derived. If the observer were actually at
such a point as K on the earth’s surface, the direction of his
zenith would be along the radius CK; also the direction of the
heavenly body at the time of observation is along the radius

CU; hence KCU or the great circle arc UK is the true zenith
distance z. Now since the U.T. of the observation is known,
the geographical position U is a definite point on the earth’s
surface; the true zenith distance z is also known, and therefore
the observer must be situated somewhere on a small circle KJ R
of which U is the pole, every point of this small circle being at

Fig. 116.
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an angular distance z from U. This small circle is called the
position circle. Tt is to be noted that a single observation of a
heavenly body leads only to a certain small circle, on which the
observer is situated. If we suppose that a similar observation
of another heavenly body is made at the same U.T., a second
position circle will be derived on which the observer must be
situated. Therefore his actual position must be at one or other
of the two points of intersection of the two position circles. As
the approximate position of the ship is always known, there is no
difficulty in deciding which of the two pointsisthe correct position.

The approximate position of the ship is obtained by the
navigator by the process of dead reckoning. He knows with fair
accuracy the ship’s various speeds and courses since leaving
harbour, or since the last determination of position. He can
also estimate, perhaps with moderate success, the effects of
winds and currents on his progress. Using these data, he plots
on a chart the ship’s position hour by hour, and when he makes
an astronomical observation he obtains from his chart the
position according to dead reckoning—the D.R. position, so
called. We shall suppose that in Fig. 116 D represents the D.R.
position of the ship at the time of the altitude observation. It is
to be noted that the D.R. position is, at best, only an approxi-
mate estimate; after 24 hours or more without astronomical
observations it is not unlikely that the D.R. position may be in
error by 10 miles or more.

180. The position line (St Hilaire’s method).

As we have seen, the altitude observation of a heavenly body
yields the information that at the time of observation the ship is
situated on a certain small circle KJ R (Fig. 116); at this moment
the estimated position of the ship is at D. It is clear that the
only part of the position circle with which the navigator need
concern himself is that part in the immediate neighbourhood of
D. His object then is to represent on his chart this part AJ B of
the position circle (shown with a heavy line in Fig. 116). Now
the latitude and longitude of U and of D are known; hence the
length of the great circle arec UD can be calculated. But this are
is simply the angle between the radii CU and OD, and as CD
produced gives the direction of the zenith at the particular
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point D, the are UD is thus the zenith distance of the heavenly
body at the v.T. of the observation for a hypothetical observer
situated at D. We shall call this zenith distance UD the
calculated zenith distance. Now the length of the arc UJ is known
from the observation—it is the true zenith distance z. Hence by
subtraction we obtain the length of the are DJ. This arc DJ is
known as the infercept. Expressed in minutes of are, it gives
the distance in nautical miles of the D.r. position D from the
nearest point J on the position circle. The are DJ is perpendicular
to the position circle at J, for U is the pole of KJR.

Also, the spherical angle UDP is easily seen to be the azimuth
of the heavenly body, at the U.T. concerned, for an observer
at D; it can be calculated or found by inspection in such tables
as Burdwood’s Azimuth Tables. In Fig. 116 the azimuth of J is
thesame as the azimuth of U, which we now suppose to be known.
Thus, under the circumstances depicted in Fig. 116, where the
calculated zenith distance UD is greater than the true zenith
distance UJ, the navigator can draw from the D.R. position on
his chart a straight line in the direction given by the azimuth of
the heavenly body; he then marks off along this line a distance
equal to the intercept, and through the point so obtained he
draws a straight line, called the position line,* perpendicular to
the line of azimuth. The position line represents on his chart
(which we will consider in greater detail in section 182) the
portion AJB of the position circle KJR (Fig. 116). It is clear
that if D is within the position circle, that is, if the calculated
zenith distance is less than the true zenith distance, the inter-
cept will be marked off in the direction opposite to that given
by the azimuth.

181. Exzample of the calculation of the intercept.t

The observed altitude of the sun’s lower limb was 177 27"-0 at
161 31m 23 y.r. on 1931 March 10, the height of the observer’s
eye above sea-level being 25 feet and the index error of the
sextant being —2"-0. The ship’s estimated position D by dead
reckoning was: Lat. 48°15' N, Long. 7° 28" W. To calculate the
intercept.

* Sometimes called the Sumner line.

t+ We retain v.T. in this chapter although c¢.M.T. is used in navigation circles, e.g.
in the Nautical Almanac (for use in navigation).
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The longitude 7° 28’ W is equivalent, in time-measure, to

29m 525 W,
For the v.T. and date, we have from the almanac:

Sun’s declination 4° 18-0 S
Sun’s Greenwich H.A. 4h 2(Qm 29s
Sun’s semi-diameter 16'-1

In Fig. 117, Z is the zenith of the ship’s estimated position.
Thus PZ = 41° 45’ (the colatitude). Also X is the position of

Fig. 117,

the sun’s centre on the celestial sphere and PX is 94° 18"-0. The
angle ZPX is the hour angle of the sun {(B.A.71.5.). We shall use
the haversine formula (section 13) to compute ZX (the calcu-
lated zenith distance). From equation (23) on page 19 we can
write the haversine formula in this case as
havZX = hav(PX — PZ) + hav#,
where hav# is a short-hand notation, defined by
havf = sin PXsin PZhavZPX.
GH.AT.S. 4b 20m 298

Long. (W) —29m 528
HATS., 3% 50m 378 loghav  1-366 40
PX 94°18-0 log sin 1-998 78
PZ 41 45-0 log sin 1-823 40

52° 330 loghavd 1-18858
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hav d 0-154 37
hav 52° 330 0-195 97
hav ZX 0-350 34
. ZX = 72° 35'-0 (the calculated zenith distance).
The reader may verify this calculation by means of the cosine-
formula. We now find the true zenith distance.
Observed alt. of sun’s lower limb ... 17°27-0

Index error ... vee . — 240
Dip (for height of eye 2o feet) s — 50
Refraction ... ee e — 31
Semi-diameter . e A+ 16-1

*. Corrected observed alt1tude ...=17°33-0
Thus the true zenith distance is ... 72°27"-0
But the calculated zenith distance is  72° 35"-0
Hence the intercept is 8'-0.
The sun’s azimuth is 118° W or 8 62° W. {(We leave this calcu-
lation as an exercise to the reader.)
Since the calculated zenith distance is greater than the true
zenith distance (72°27°-0), the position line on the chart
(Fig. 118) is obtained by drawing from D (the estimated position)

North

b

A (eqz mated

Position)
X
(Direction }
of Sun)

Position Line

Fig. 118.

a line DX in the direction S 62° W, and taking a point J such
that DJ represents eight nautical miles; the straight line AB
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drawn through J at right angles to DX is the position line on
which the ship’s position must be at the time of observation.
This position line is also shown later in Fig. 122.

182. Mercator’s chart.

Unless a ship is manceuvring, its course is generally constant
for several hours at least; in these circumstances, its track on
the earth’s surface is called a rhumb line or a loxodrome, which
can be more precisely defined as a curve on the earth’s surface
such that the tangent at any point of the curve cuts the meridian
through that point at a constant angle. In Fig. 119, AXZB is
a rhumb line cutting all the meridians between 4 and B at a
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X «
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k gh l
Fig. 119. Fig. 120.

constant angle §. It is evident that a projection of the earth’s
surface on which rhumb lines are represented by straight lines
would be of inestimable convenience to the navigator, for then
‘the track of his ship would be represented on the chart by a
straight line. Such a chart is Mercator’s projection. We now
state the two main principles of its construction. (i) AUl rhumb
lines on the surface of the earth are represented by straight lines
on the chart. (ii) The angle between any two intersecting rhumb
lines is correctly represented on the chart; for example, if two
rhumb lines intersect at an angle of 30°, then on the chart the
angle between the two corresponding straight lines is also 30°.
Now the equator is a rhumb line, and all meridians of longitude
are thumb lines intersecting the equator at right angles. Hence
on the chart the equator will be represented by a straight line
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(k! in Fig. 120) and the meridians KAP and LBP, for example,
will be represented by parallel straight lines ka, {b perpendicular
to £I. On the chart the meridians are equally spaced, so that the
length of kl is proportional to the difference of longitude between
K and L (or between 4 and B). Again, all parallels of latitude
are rhumb lines intersecting the meridians at right angles; hence
on the chart parallels of latitude such as CB will be represented
by straight lines parallel to k! (for example, cb in Fig. 120) and
perpendicular to ka and lb.

Consider two neighbouring points X and Z on the rhumb line
AB (Fig. 119). Draw YZ, a parallel of latitude. We can regard
X YZ as a small plane triangle in which YXZ -0 (the constant
course along the rhumb line). If AL denotes the angle X PZ (the
difference of longitude between X and Z) and ¢ the latitude of Z,
then YZ = AL cos ¢. If the latitude of X is ¢ — A¢, then
XY = Aé. Now YZ = XY tan 0, so that

Apsecd = ALcotd ... (9),
in which we suppose that A¢ and AL are expressed in circular
measure. Now on the chart the meridians of X and Z are re-
presented by the straight lines gz and hz, and the rhumb line
ABisrepresented by the straight line ab making the angle 8 with
the meridians. The distance gh represents the difference of
longitude AL between the meridians GXP and HZP. Let us
suppose, for example, that the scale of the chart is chosen so
that one minute of arc of longitude is represented by one milli-
metre on the chart; then if AL is equivalent to » minutes of arc,
the length of gk will be » mm. But since AL is expressed in
circular measure, we have AL = n sin 1’. Hence (9) becomes

Apsecd =mncotfsinl" ... (10).
In the small triangle zyz (Fig. 120), which represents on the

chart the small triangle X YZ on the sphere, we have y;cz = §
and yz = gh =n mm. Denote the length of zy in millimetres

by Ay. Then Ay=mncotd ... (11).
From (10) and (11), putting sin 1’ = 1/3438, we obtain
Ay = 3438sec pAp ... (12).

If the difference of latitude between X and Z is 1’, so that A¢
(in circular measure) is 1/3438, then by (12) Ay =sec¢ mm.
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It is thus seen that as ¢ increases the actual distance (measured
in millimetres) between the parallels of latitude ¢ and (¢ +1')
on the chart increases from the equator northwards or south-
wards, becoming infinite when the north and south poles are
reached ; for this reason, the north and south poles cannot be
represented on the Mercator chart. On the chart, the latitude
scale is marked on one or more lines parallel to 7b.

From (12), by integration, we have for the length of Ib
(expressed in millimetres), which we denote by y,,

¥, = 3438 log, tan (Z + ‘% ) ...... (13),

in which ¢ is the latitude of B. Similarly, if 4, = ka and ¢’ is
the latitude of A,
y, = 3438 log, tan C—;+%) ...... (14).

These formulae give the distances on the chart between the
equator and the parallels of latitude, on which 4 and B are
situated, in millimetres, that is to say, in terms of the distance,
as unit, on the longitude scale corresponding to one minute of
arc of longitude; this latter scale is engraved on %I or on one or
more lines parallel to kl.

We now consider the problem of deriving, from measures
made on the chart, the distance in nautical miles between any
two positions on the earth measured along the rhumb line joining
them. Consider the neighbouring points X and Z; on the chart
they are represented by x and z. The triangles X YZ and zyz are

similar; hence XZ:XY=xz:xy=secB:1 ... (15).

If XY = I’ (one nautical mile), then by (15) XZ = sec f nautical
miles. Now in the triangle xyz the distance xy represents one
nautical mile and since, by (15), 2z = zy sec 4, the measurement
of xz will give the number of nautical miles between X and Z,
provided xz is measured in terms of xy as the unit. The latitude
scale thus provides the unit by which a distance measured on
the chart gives correctly in nautical miles the rhumb-line
distance between the corresponding points on the earth. As this
unit varies in length according to sec ¢, the process of finding
the number of nautical miles represented by a line such as ab on
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the chart is theoretically complicated, for it involves the division
of ab into a large number of sections and deriving the number of
nautical miles in each section by reference to the unit of the
latitude scale immediately opposite. In practice, however, it is
sufficiently accurate to divide ab into sections of 30 or 40 nautical
miles in length and to measure each in terms of the latitude unit
opposite the mid-point of the section concerned.

183. Determination of the ship’s position from two observations of
altitude.

We consider now the general problem of determining the
ship’s position from two observations, making due allowance for
the “run” of the ship between the observations, which we shall
suppose to be made at times ¢; and #,. Let D (Fig. 121) on the

Fig. 121

chart be the estimated (D.R.) position at f,. Computing the
zenith distance of the heavenly body observed at ¢, for the
latitude and longitude of D, and using the corrected observed
altitude, we obtain the intercept. Then having found the azimuth
of the body we can draw on the chart the position line at ¢,,
according to the procedure of sections 180 and 181. Let 4B be
the deduced position line at f;; then the position of the ship a
t, is on the line 4B. Let JK be parallel to the ship’s course and
equal in length to the distance travelled in the interval (¢, — t,).
Through K draw EF parallel to AB. Take any point B on 4B
and draw RS parallel to JK to meet EF in 8. If the ship were
actually at J at time ¢;, then its position at #, would be at K.
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Similarly, if its position at ¢, were at R, its position at f, would
be at 8. Hence it is evident that, as the ship’s position at ¢, is
somewhere on AB, its position at ¢, must lie on EF. This line
EF is called the transferred position line.

We now utilise the second observation made at t,. We can
use K as the estimated position at this time and, calculating the
intercept as before, we obtain the position line GH on which the
ship’s position must lie at £,. But the first observation and the
application of the ship’s run place the ship on EF at t,. Hence
its position at ¢, is at O, the intersection of ZF and GH.

The ship’s true position at ¢, (if it is required) is obtained by
drawing through O a line parallel to J K ; the point of intersection
of this line with AB is the ship’s position at ¢;.

It is evident that we can utilise observations of the same body
made at £, and ¢, (for example, the sun), provided the change of
azimuth in the interval is such that the two derived position
lines do not intersect at too small an angle.

We illustrate the principles of this section in the following
example involving observations of the sun and a star.

184. Example of finding the ship’s position from two observations.

The estimated position of a ship steaming N 84° E at 8 knots
was Lat. 48° 15'N, Long. 7° 28 W at 16k 31m 2% y.r. on
1931 March 10. The following observations were made:

At 161 31m 25 U.T., observed altitude of sun’s lower limb was
17° 27'-0.

At 18h 46m 10s U.T., observed altitude of Retelgeuse was
48° 55'-0.
To find the ship’s position at 182 46m U.T., givenithat the index
error of the sextant is — 20 and that the height of eye is 25 feet.

The first observation is that considered in detail in section 181.
We now plot the results on the chart (Fig. 122). D is the esti-
mated position given; DJ is the intercept 8'-0 drawn in the
direction S 62° W and 4B is the position line at 161 31™ u,T.

The interval between the two observations is 2} hours; the
run is therefore 18'-0. We draw JK in the direction N 84° E
(the ship’s course) and make JK equal to eighteen divisions of
the latitude scale opposite. EF is drawn through K parallel to
AB; EF is the transferred position line on which the ship must
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be situated at 18h 46m u.r. We take K as the estimated
position at this latter time, and use this position to derive the

position line given by the observation of Betelgeuse. From the
chart we find that K is the point, Lat. 48° 13’ N, Long. 7° 12"-5W.
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8° 50 &0 30 20 10 70
Longitude (West)
Fig. 122.

We first calculate the hour angle of the star as follows (its
right ascension and declination are 5t 51m 278 and + 7° 23'-8

respectively):

G¢.s.T. at Oh U.T. 11h 06m 49s
U.T. of observation 18 46 10

29 52 59
U.T. to G.S.T. conversion +3 05
a.s.T. of observation 29 56 04
Long. (W) —-28 50
L.8.T. 29 27 14
R.A. star 5 51 27
H.A* 23 35 47

* The value of the star’s Greenwich hour angle can be obtained directly from the
Nautical Almanac and the procedure is then slightly different. The working given
here is required if the data is taken from the Astronomical Ephemeris.
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If X denotes the position of Betelgeuse on the celestial sphere
and Z the zenith of the point K, we have

PX =892°36"2; PZ = 41°47-0; ZPX =242 _ n.a, — 0b 24m]3s,
We calculate ZX by the cosine-formula:

log cos PX T1-109 71 logsin PX  1-996 37
log cos PZ 1-872 55 log sin PZ 1-823 68
log cos ZPX 1-997 57
2.982 26 1-817 62
Hence cos ZX = 0-096 00 + 0-657 08 = 0-753 08.
. ZX =41°8'-5,

The azimuth is found by calculation to be 171° E, so that the
bearing of the star is S 9° E—in the direction K'Y in Fig. 122.
We now correct the observed altitude:

Observed alt. of star... ... 48°550
Index error ... —-20
Dip ... —-5-0
Refraction ... —0-9
*, corrected observed alt. ... = 48°47"-1
Thus the true zenith distance is ... 41°12"-9

But the calculated zenith distance is 41° 8':5
Hence the intercept is 4'-4.

As the calculated zenith distance is smaller than the true
zenith distance, the point K is evidently within the position
circle given by the observation of Betelgeuse. Hence to obtain
the position line on the chart we draw KM equal to the intercept
(4'-4), and in the direction opposite to that given by the star’s
azimuth. The line GH drawn through M perpendicular to KM is
the position line resulting from the observation of the star.

The ship’s position at 182 46™ U.T. is given by O, the inter-
section of GH with EF. From the chart it is found that O is the
position: Lat. 48° 17"-8 N, Long. 7° 16’ W,

185. Special methods.

When the pole star is observed the position line can be ob-
tained very easily by means of simple tables based on the for-
mula in Exercise 20, p. 55. These tables are given in the
Nautical Almanac, the Astronomical Ephemeris and also in
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Inman’s Tables. Since the bearing of the pole star is in general
very nearly north, the resulting position line is practically a
parallel of latitude; thus an observation of the pole star yields
the ship’s latitude.

When the hour angle of the heavenly body observed is within
30 or 40 minutes from the meridian, simple tables based on the
formula of Exercise 21, p. 55, facilitate the calculation of the
zenith distance. Such observations are known as ex-meridian
observations.

In the general problem, the arithmetical computations can be
greatly lightened by means of special tables, amongst which may
be mentioned Alfitude T'ables* by R. de Aquino and Posttion
Line Tables (Sine Method)* by W. M. Smart and F. N. Shearme,
the general principles of which are used in other tables. The
position circle on the earth is deducible from two items of obser-
vation: (i) the observed altitude of the heavenly body concerned,
(if) the U.T. at which the observation is made. As the position
circle is independent of the estimated position of the ship, so
also is the position line on the chart, and although we employ the
estimated position (D) to derive the position line, any other
point € within 30 or 40 miles of D would serve equally well. In
the sine method, a particular point C is selected in a way that can
be best illustrated by means of an example. Suppose that the
ship’s estimated position D is: Lat. 48° 39" N, Long. 7° 18" WV,
and that the hour angle of the heavenly body computed for D is
2b 18m 323, We choose the latitude of (' to be the integral number
of degrees nearest to that of D and its longitude such that the
hour angle for C is the nearest multiple of 4™. In this example,
the latitude of C is 49° N and its longitude such that the hour
angle for C is 2b 20m; hence C must be 1m 285 or 22"-0 east of D,
so that its longitude is 6° 56" W. The point C is plotted on the
chart. The choice of C in the general case—its latitude a whole
number of degrees and its longitude such that the hour angle of
the heavenly body is a multiple of 4m—allows the tabulation in
a compact form of certain quantities which are used in the
subsequent calculations.

In Fig. 123 let Z be the zenith of C, X the heavenly body
(declination 8) and H the hour angle for the longitude of C. We

* Published by J. D. Potter, 145 Minories, London, E. L
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shall first suppose that this hour angle is within 62 of the meridian.
Draw the great circle arc ZY to cut the great circle PX at right
angles. Let PY and ZY be denoted by U and p respectively, and
let ¢ denote the latitude of C. From the right-angled triangle
PZY, in which PZ = 90° — ¢, we have

tanU=cotpecos H ... (16).
cosp =singsecU ... (17).
b 2

Meridian

of C

Fig. 123,

Let the zenith distance ZX be denoted by (90° — a); we call
a the calculated altitude. From the triangle ZY X, in which
YX=PX—-U=90°—8— U, we have
sina=sin (8 + U)cosp ... (18).

The values of U, calculated by means of (16), for each degree
of latitude and at intervals of 4 in the hour angle, from 0t 0m
to 68 0™ or from 188 0™ to 242 0™, are givenin the tables. Adjacent
to each of these entries, the corresponding values of log cos p,
given by (17), are tabulated. The computation of the calculated
altitude a follows simply from (18). The difference between a so
derived and the observed altitude (corrected) is the intercept,
which, of course, has to be drawn from C on the chart. In this
way the position line can be drawn with a minimum of arith-
metical computation.

When the hour angle (H) of the heavenly body is more than
6b from the meridian, a slight modification is necessary. Let H,
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denote (12t — H) or (H — 12b), The quantities log cos p and U
are taken from the tables for the appropriate value of H, and
the formula corresponding to {18) is

sin @ = sin (8 — U) cos p.

186. Equation of a great circle on Mercator’s chart.

The great circle distance between two points on the earth’s
surface is shorter than the rhumb-line distance, and the difference
becomes of economic importance in long oceanic voyages. In
such instances it is the practice to follow the appropriate great
circle as nearly as possible. Suppose that the great circle is
represented on the chart. Itis divided into a suitable number of
sections, and between the beginning and end of a section the
ship follows the appropriate rhumb-line course (represented by
the straight line joining the ends of the section), which is easily
obtained from the chart. When the ship reaches the end of a
section, its course is altered to that corresponding to the next
section; and so on.

To find the equation of the curve representing the great circle
joining two points U and V (Fig. 124) we proceed as follows.
Let the great circle UV cut p
the equator in O and let the
longitude (measured east) of
- Obe L, PG being the Green-
wich meridian. Let the incli-

. nation of UV to the equator

_ (in the direction of increasing
- east longitudes) be denoted
: by i; 4+ can have all values

. between 0° and 180°. Let

L and ¢ denote the east

. longitude and north latitude

- respectively of any point X

- on the great circle UV. Let

' z and y be the co-ordinates Fig. 124.

~ of X on the chart; we shall suppose that z and y are expressed

in terms of the radian as unit. Then we have

z=L .. (19),
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where L is expressed in circular measure, and, by (13),

= log, tan <4 ;S) ...... (20).

From the spherical triangle XOH, in which H is the inter-
section with the equator of the meridian through X, we have:

OH=1L— L,, HX = ¢, XOH = i and X110 = 90°. Formula
D gives tan ¢ = sin (L — Lo) tans ... 21).

But (20) can be written

or=tan (T4 5) =05 = g
Hence sec ¢ + tan ¢ = e?,
secd —tan ¢ = eV,
from which tand =} (e¥ — ev)=sinhy ... (22).

Hence, using (19) and (22) with (21), we obtain the equation of
the great circle in the form
ginhy =sin (x — L)) tant  ...... (23),

in which we regard L, and ¢ as two constants associated with the
great circle. The values of L, and ¢ can now be expressed in
terms of the longitudes L, and L, of U and V respectively, and
the corresponding latitudes ¢, and ¢,. From (21), we have

tan ¢, = sin (L, — Ly) tan ¢
tan ¢, = sin (L, — L) tan ¢
tan ¢, sin (L, — L,)
tan ¢, sin (L, — L,)’
from which we obtain
tan ¢, — tan ¢,  sin (L, — Ly) — sin (L, — L,)
tan ¢, + tan ¢, sin (L, — L,) + sin (L; — L,)’
giving, on further simplification,
L,+ L, _ _ L,— L\ sin (¢, + ¢))
tan <————2 L0> = tan ( 5 > Fryra
...... (25).
The value of L, is calculated from (25). tan s is then obtained
from one of the formulae (24).

By division,
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To find the position of a point on the curve with any assumed
longitude L, we calculate the corresponding latitude ¢ by means
of (21). The z and y co-ordinates are then given by (19) and (20).

The plotting of a great circle track on the Mercator chart can
be much simplified by means of the Gnomonic Projection.

EXERCISES
1. Using the effect of refraction as given in section 178, p. 318, prove that
the distance, in nautical miles, of the horizon for an observer & feet above sea-

fovel (gG ’!>ir cosec 1’
1la ’

where a is the earth’s radius in feet.

2. An observer, on the mast of a ship, 80 feet above sea-level, can just see
a light which is 100 feet above sea-level. Show that his distance from the light
is 21 nautical miles.

3. Show that in a place whose latitude is ¢ sunrise at the equinoxes will be
visible at the top of a mountain & feet high about 4 V' sec ¢ seconds sooner

than at its foot. [Coll. Exam.}
4. The path of the setting sun makes an angle 8 with the horizon. Prove
that if the sun’s declination is 8 a mountain in latitude ¢, of height }.of the
earth’s radius, will have its summit illuminated
12 VT cosec 6 sec 8/ V'n hours

after the sun has set on the plain at its base.
Determine to the nearest minute the value of this expression at the summer
solstice for a mountain three miles high in latitude 45°. [Coll. Exam.]

5. The angle of depression of the sun’s upper limb at setting is observed from
an eminence to be d, and from a neighbouring eminence & feet higher to be
d + Ad, where Ad is expressed in seconds of arc. Prove that the earth’s radius
in feet is approximately hoosd cot d

Adsin1” *

6. Xf sis the length of the rhumb line joining two points in latitudes ¢, and ¢,
and § is the angle which the rhumb line makes with the meridians, prove that
8=a (¢4, — ¢,) sec b,
where a is the earth’s radius. [Ball.]

7. Show that on Mercator’s projection the equation of a small circle on the
earth (assumed spherical) is of the form
oosh y/c sec z/c = const.,
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provided that the small circle does not include a pole of the earth and , y are
measured on the chart from a certain origin.

Obtain the radius of curvature of this curve, at a point where the tangent lies
N and 8, in the form p = ¢ sin 8 (cos? 5 — sin? 0)_)‘,’
where § is the latitude of the centre of the above small circle and 4 is its angular
radius.

Determine the error made in neglecting the curvature of the * position line™
when determining longitude from a timed observation of altitude 30° in latitude
51° 30", the error in the assumed latitude being 100”; the observation is made
near the prime vertical and the assumed latitude corresponds to an ideal
observation exactly on the prime vertical. [Lond. 1926.]

8. An observation of the altitude of a star at a place of known latitude ¢ is
made when the star is on the prime vertical. Show that an error in ¢ will have
no sensible effect on the calculated longitude.

9, The latitudes and west longitudes of two places F and @ are (¢,, A,) and
(fg Ag) respectively, When simultaneous observations of the same heavenly
body (declination 8) are made at F and G, the corrected altitude is a in each
case. Prove that

sin? (A — A;) cos28 = P2 — 2P, Pycos (Mg — A)) + Pyt
= 82— 28,8,008 (Ag — A;) + 833

where P;=sinasecé; —sindtang;) .
. (§=1,2),
and 8;=cosasin 4;
4, and 4, being the azimuths at F and @ respectively. [Lond. 1930.]

10. At 15k 17m 48¢ U.T. on a certain date the sun’sjobserved altitude
(corrected) was 89° 34". Assuming that the ship’s latitude was known to be
23° 3’, that the sun’s declination was 23° 13’ and the equation of time
+ Om 128, prove that the ship’s longitude was either 49° 4" W or 49° 56" W.

11. When the latitude and longitude are found by simultaneous observations
of the altitudes a;, @, of two known stars, prove that the two possible places of
observation will have the same longitude if

sin a,/sin a, = sin §,/sin 8,
where 8, 3, are the declinations of the stars. [Coll. Exam.]

12, Assuming that an observation of the sun’s altitude is made correctly
but that the u.T. used in the subsequent calculations is in error by At seconds.
show that the resultant position ‘tine is displaced through }Atsin 4 cos ¢
nautical miles, where A4 is the sun’s azimuth and ¢ is the latitude.

[Lond. 1930.]

13. Two altitudes a,, a, of the sun are taken, at an interval of time 24, and
the position lines cut orthogonally. Show that

8in a,8in @y = 1 — 2 sin? A cos? 3. [Coll. Exam.]
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14. In determining the hour angle of a star a sailor makes errors Aa in his
altitude and A¢ in his assumed latitude. Show that the error in hour angle will

be given by AH = A¢ cot A sec ¢ — Aa sec ¢ cosec A,
where ¢ is the latitude and A4 is the azimuth. [M.T. 1923.]

15. At 6 p.m. a star X is observed (all corrections having been applied) as
follows: altitude, 33° 20"; true bearing, 220°.

At 7 p.m. a star Y is observed similarly, as follows: altitude, 63° 50; true
bearing, 290°.

The calculated altitudes are both computed for the position Lat. 60° N,
Long. 30° W: they are 33° 15" and 63° 56 respectively. If the ship is steaming
070° at 10 knots find, by plotting on squared paper, the position of the ship at
6 p.m. and at 7 p.m. [Lond. 1928.]

16. An intercept p is drawn in the direction 6 east of north from the position:
east longitude, L; north latitude, ¢. If the true coordinates of the ship are
L + AL, ¢ + A¢ prove that

ALcos¢sinf + Apcos§ —p=0

where AL, A¢ and p are expressed in minutes of aro,

17. A ship’s navigator observes that the altitude of a known star as it
crosses the southern meridian is a°, and the time of the transit is ¢ hours after
Greenwich mean noon. The star’s declination is 8° and its right ascension is
a hours. From the almanac he finds that the mean sun’s right ascension was
¢ hours at Greenwich mean noon on the day of the observation. Show that the
3661
3653 ) * Poth

measured in degrees. [M.7T.1921.]

ship is in latitude 90° + 8 — & and west longitude 15 <o —



CHAPTER XIV
BINARY STAR ORBITS

187. Visual binary stars.

The name “double star” is ordinarily applied to a pair of stars
seen very close together in the telescope. This apparent closeness
is due to one of two causes: (i), the two stars may be at greatly
differing distances from the earth, but nearly in the same
direction as viewed from the earth; (ii), they may actually be
close together in space, forming a system in which their mutual
gravitational attraction might be expected to be exhibited by
orbital motion. In 1803, Sir W. Herschel first demonstrated,
from observations carried on over a quarter of a century, that
certain double stars showed relative orbital motion. A large
number of stars of this character have since been discovered,
and to these the name binary stars is given. The class of double
stars in (i) above are called optical double stars; we do not
consider these further.

Generally, the two members of a binary star are of unequal
brightness. The brighter star is called the primary and the
fainter is called the companion. Fig. 125 represents part of the
celestial sphere in which A is the primary and B the companion.
Let AN define the direction of the north celestial pole—AN is
then part of the meridian
through 4. The angle NAB,
denoted by 4, is the position
angle of B with respect to 4.
The position angleis measured
from 0° to 360° eastwards, in
the direction indicated by the
arrow. The angular distance
between A and B is called |
simply the distance 4B or, '
sometimes, the separation, Y
and is generally denoted by p. S _

Thus p and 8 define the posi- Fig. 125,
tion of B with respect to 4. If 4 and B form a binarysystem then,

West ¢ ——--
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owing to the mutual gravitational attraction of the two stars—
which we assume to be given by the same law as in the planetary
system—the companion will describe an elliptic orbit relative to
the primary. This is the true orbit and its plane is the true orbital
plane. In general, th's plane will be distinct from the plane
perpendicular to the line of sight and consequently the observed
orbit, called the apparent orbit, will be the projection of the true
orbit on the plane perpendicular to the line of sight. This latter
plane is the plane of the apparent orbit. The observations furnish
the details concerning the apparent orbit, and it will be our
purpose to show how the elements of the true orbit can be
deduced. The importance of this subject in astronomy lies in the
fact that valuable information concerning the masses of the
stars can be obtained.

188. The micrometer.

The instrument used in practice for measuring distance and
position angle is the micrometer. This is attached to the eye-end
of the telescope. In the field of view of the micrometer eye-piece
are generally three spider-wires, one of which, X ¥ (Fig. 126%*),

is fixed centrally and two, CD and FQ@, are perpendicular to X Y.
The plate to which these wires are fitted can be rotated about
the telescopic axis. By adjustment, the images of the two stars

* Unlike Fig. 125, Fig. 126 represents the observer’s view.
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A and B lie on XY. A graduated circle enables the position
angle 0 to be derived, provided the reading corresponding to the
direction ON (position angle 0°) can first be obtained. This is
effected in practice as follows. The telescope is directed to any
star and its image placed on XY, If the telescope is stopped, the
diurnal motion will carry the star along a parallel of declination;
if XY is perpendicular to the meridian ON, the star will thus
appear to travel along XY. The procedure then is to rotate the
plate carrying the wires until this condition is fulfilled. In this
position, the reading on the graduated scale corresponds to
position angle 90° or 270°; hence the reading corresponding to
position angle 0° is deduced. Alternatively, by rotating the
graduated circle about the optical axis of the telescope, the scale
can be made to correspond exactly with position angle; in this
case, no correction is necessary to the readings.

The distance p between A and B is derived by means of the
two wires CD and F@, each of which can be moved perpen-
dicularly to XY by fine screws to which micrometer heads are
attached. When the instrument is adjusted, as shown in Fig.
126, the observation for distance consists in placing CD over 4
and F@ over B. The micrometer readings furnish the value of p,
expressed in terms of the number of revolutions of the micro-
meter heads. From observations made on two stars whose
angular distance is accurately known, the value of one revolu-
tion of a micrometer can be expressed in seconds of arc.

The complete observation of a binary star leads to the value
of the distance p, expressed in seconds of arc, and the value of
the position angle 0.

189. The elements of the true orbit of a visual binary.

Let a sphere be drawn with the primary star S as centre
(Fig. 127). The straight line joining the earth to S cuts the sphere
at K. The plane of the great circle, of which K is the pole,
represents the plane of the apparent orbit. K§ is the line of
sight. We suppose that the great circle HLG defines the plane of
the true orbit of the companion around S, the angle GLD being
the inclination ¢. The straight line M SL, which is the intersection
of the two planes considered, is the line of nodes. Let the radius
SN define the direction of position angle 0°. The true orbit of
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the companion relative to the primary § is shown shaded in
Fig. 127. When the companion is at F in its true orbit, its
position in the apparent orbit will be obtained by drawing a
perpendicular from F to the plane of the great circle NLD. This
perpendicular will lie in the
plane of the great circle
K@D, where @ is the point
on the sphere obtained by
producing SF. Thus the
observed position of the
companion will lie on the
radius 8D and therefore its
position angle 8 is the aro
ND. (We require position
angles to be measured in
the sense NLD.)

If r is the radius vector
SF, the distance p is given

by

p=rcos GD ...(1). Y Line of Sight
The position angle of that g 127

node which is less than 180° from X is denoted by Q; in Fig. 127,
NL = Q and consequently LD =8 — Q.

Let P be the point on the true orbit at which the companion
is nearest the primary; this point is called periastron; the other
extremity of the major axis is called apastron. The semi-major
axis (expressed in seconds of arc) of the true orbit will be denoted
by a and the eccentricity by e. Let v be the true anomaly when
the companion is at F. Then assuming that the companion
- moves in the direction of the arrow near P, the angle FSP is v
and therefore AG = v, Let w denote thearc LA. Then LG =v + w.
Hence we obtain, from the triangle LGD right-angled at D,

cos LG = cos LD cos GD,
or cos @D = cos (v + w) sec (0 — Q),
or, using (1), p=rcos(v+w)sec(d —Q) ... (2).
Also, from the triangle LGD, we obtain

tan (0 — Q) = tan (v + w)cost  ...... (3).
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We denote the orbital period by T (in years). The mean angular
motion n of the companion around § in the true orbit is given by

n=27/T ... (4).
Let the time of periastron passage be denoted by 7. Then the
mean anomaly M at time ¢ is given by

M=n(@t—-7)=E—esinE ... (5),
where E is the eccentric anomaly. The true anomaly v is related
to & by v (1+etd

tan ;) = (1__-_6 ) tanEj2 ... (6).
W a5 4nta®
e have also nrad = =5y = Gm+my)) ... (7,

where m,, m, are the masses of the two stars and G is the con-
stant of gravitation. We regard 7' as an element, since the sum
of the masses is defined in terms of a and 7.

The elements of the true orbit are: a, ¢, 1, Q, w, r and 7. If all
the elements are known, the value of E at time ¢ can be derived
from (4) and (5), and then the true anomaly v is found by means
of (6). Then from (3) and (2), the values of § and p can be finally
obtained. In this way, the observed quantities p and 6 at any
time can be compared with the calculated values based on the
elements of the true orbit. The problem with which we shall be
more intimately concerned is the derivation of the elements of
the true orbit from the observations which enable the apparent
orbit to be drawn.

It is to be remarked that although the value of the inclination
may be known, the orbital plane is not uniquely determined. So
far as observations with the micrometer are concerned, it is
uncertain whether the true orbital plane is that given by the
great circle HLG, or that given by the great circle of which an
arc LJ only is shown in Fig. 127, the angle DLJ being also 3.
Now as regards the orbital plane HLG, in which the angular
motion of the companion is in the direction from L towards 4,
it is evident that as the companion passes through L the com-
ponent of its orbital motion in the line of sight (that is, perpen-
dicular to the plane of the apparent orbit) is directed towards
the earth. In this instance, the inclination is denoted by — 4.
If the companion’s angular motion is in the direction LJ, the
inclination is + 4, although the distinction is artificial.
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When the position angles increase with the time, as in the two
orbits just considered whose planes are defined by LG and LJ,
the motion is direct. When the position angles decrease, as they
would do if the angular motion were in the direction GL or JL,
the motion is retrograde.

190. T'he apparent orbit of a visual binary.

As we are considering the orbit of the companion relative to
the primary, the latter will be situated at a focus of the true
elliptic orbit. Now the apparent orbit is the projection of the
true orbit on the plane perpendicular to the line of sight and is
also an ellipse. But it does not N c
necessarily follow that the focus h
of the true ellipse (that is, S)
projects into a focus of the ap-
parent ellipse. Let the ellipse in
Fig. 128 represent the apparent
orbit and § the primary. From
what has just been said, § is
generally not at a focus of this
ellipse. If SN denotes the direc-
tion defining position angle 0° T —*
and SE that of 6=90° the Fig. 128.
general equation of the ellipse referred to SN and SR as x and
y axes respectively is

Ax®+ 2Hxy + By* + 2Gx + 2Fy +1=0 ...... (8),
in which there are five independent constants 4, B, ... F,
defining the particular ellipse concerned. If the companion is

at C, an observation gives p and 6, from which the rectangular
co-ordinates # and y of C are given by

z=pcosf, y=psind.
Five such observations spread over the orbit are in theory
sufficient to determine the five constants 4, B, ... F of (8), but,
owing to the unavoidable errors in measuring p and 6, the ellipse
cannot be determined accurately in this way. A large number
of observations, spread over many years, give a series of points
such as C, D, E, ... from which a preliminary ellipse can be
drawn. The test as to the accuracy of this ellipse is afforded by
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the following consideration. In the true orbit the areas swept
out by the moving radius vector are, by Kepler’s second law,
proportional to the relevant intervals of time, and the ratio of
any two such areas is not altered by projection. Hence, in the
apparent orbit, if ¢, ¢,, t; are the times at which the companion
is successively at C, D and E, the ratio of area CSD to area DSE
is equal to the ratio of (£, — t;) to (t; — t;). The latter ratio is, of
course, accurately known. This test can be rapidly carried out
with a planimeter, and the preliminary ellipse is modified until
the requirements indicated are fulfilled. We assume now that
the apparent ellipse has been satisfactorily drawn.

The constants 4, B, ... F of the general equation (8) can be
conveniently derived as follows. Let the co-ordinate axes cut
the apparent ellipse (drawn to a convenient scale) in X, R, U
and 7T'. Let the co-ordinates of U and T be (z,, 0) and (— z,, 0).
Since these co-ordinates satisfy (8), we have

Az?+ 2Gx, +1=0,

Az,2 — 2Gz, +1=0,
from which 4 and G are determined. A similar procedure for
the points K and R enables B and F to be found. If (£, ) are the

meagured co-ordinates of a point D on the apparent ellipse, H is
found from the relation

— 2Hfny = AL+ By®* + 2G¢ + 2Fn + 1.
Amongst the many methods of deriving the elements of the
true ellipse, there are the two well-known methods of Kowalsky

and Zwiers, which we shall describe in detail. In each method
the apparent orbit forms the basis of the subsequent procedure.

191. Kowalsky’s method of determining the elements of a visual
binary orbit.

The constants 4, B, ... F of the equation (8) for the apparent
orbit are first derived according to the method given, or other-
wise, the z-axis (Fig. 129) being SN (in the direction of position
angle 0°) and the y-axis being SR (position angle 90°). K is the
pole of the great circle NLR. We take SK as the z-axis.

Let SA be the direction of periastron and C the pole of the
plane of the true orbit. Then since S is the focus of the true orbit
of the companion relative to the primary, the equation of the
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orbital ellipse referred to rectangular axes S4 and SB in the
plane of the true orbit is

(€ +ae)* n*
—a ot
in which b® = a? (1 — e?). The apparent orbit, whose equation is

(8), is the projection of the ellipse, given by (9), on the plane
NLR.

Let (I,, my, n;) be the direction-cosines of SA with respect to

9),

Fig. 129.

the axes SN, SR and SK. Then if 4 is joined by great circle arcs
to N, R and K, we have

I, =cos AN, m, = cos AR, n, = cos AK.

Similarly, let (l,, my, n,) and (I3, my, n3) be the direction-
cosines of SB and SC with respect to SN, SR and SK. Then

l,= cos BN, m,=cos BR, n,=cosBK,
and l,=cos CN, my=cos CR, ny=cosCK.
From the spherical triangles ANL, ARL, AKL we obtain
l,=cosQcosw— sin Qsinw cos
m;=sinQcosw+ cosQsinwecost} ...... (10).

n, = sin w sin ¢
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From the triangles BLN, BLR and BLK—or simply writing
(90° + w) for w in (10)—we obtain the direction-cosines of SB:

I = — cosQsinw — sichos«ucosi}
my = —sin 2 sin w + cos2coswcost; ...... (11).
Ny = coS wsin ¢ j

From the triangles CLN, OLR, CLK we obtain
s = sinQsin ¢
my=—cosQsinzy ... (12).
Ny = COS 1

Amongst the well-known relations connecting the various
direction-cosines, we shall use the following:

Limy —lymy =7ng ... (13),
e o+Lr +Lr =1 L (14),
m?® +m? +mt =1 {15),
Lmy+ lymy+ lymy =0 L (16).

Let (£, ) denote the co-ordinates of any point on the true
ellipse with reference to the axes S4, 8B, and let (z, y) be the
co-ordinates of the projection of this point on the plane NLR
with reference to the axes SN, SR. Then from the circumstances
of projection, we have

z=hL¢ + lz"],
y=m¢ + myy,
from which (limy — Lymy) € = mpx — Ly,
or, using (13), £= ’ﬁ%:ﬂ ...... (17).
3
Similarly, n=— mr—by (18).
Ny

Now these values of ¢ and 7 satisfy (9); hence

(myz — by +aens)? | (mz —Ly)*
aznsa bznaz

But z and y satisfy (8); hence (19) and (8) must represent the
same ellipse on the plane of the apparent orbit. It follows that
the coefficients of 22, zy, y3, ... in (8) must be severally propor-
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tional to the coefficients of 22, zy, %2, ... in (19). Let f denote the
common ratio. Then we have

n2\a? ' b?

_f B W
B = n—32 (d’z + 52)

_ [ (Lmy  Lmy
H_—@(GZJFV)} ...... (20)
el _ femy

_felz
ang
and 1=—f(1—e?) }

From these equations we obtain, after a simple reduction,
(h2=m?+ L2 —m,?)

ny2a? (1= e?.)'z'—
L
= ngta® (1— ez)'z ’
by the aid of (14) and (15). Inserting the values of l;, m; and n,
given by (12), we have

F:f—G*+A—-B=

cos 20 tan?;

F: @2+ A—- D= g (21),
where p=a(l—e?) ... (22).
s _ (Lymy + lym,)
Again, we have FGQ— H = — 70t (1= e
= Lmg
- ngtp?’

by the aid of (16) and (22). Hence, from (12),
sin 2Q tan?s

FG@—H=—-- Topr e (23).
From (21) and (23), there results
(F2—- G2+ A— B)sin2Q + 2(FG — H)cos 20 = 0 ...(24),

from which Q can be determined. It is to be remembered that
the value of Q, according to our convention, lies between 0° and
180°,
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tan?4

7 is found

Using the value of Q just found, the value of
by either (21) or (23).

Again, Fr+ Gt (4+ B)= BT E R
_(2—n?—mn?)
p2costy
using (14) and (15). But by (10) and (11),

2—m?—n2=2—sin?s

’

= 2cos?¢ + sin?s,

g

Hence F*+G'— (4 + B)= 522+ tﬁ;‘zl ...... (25).
iy

But tan’s has already been determined; hence the value of p?

pz

can be determined from (25). When p has been found, the value
of tan?+—and hence the inclination s—can be calculated (as
mentioned on p. 344 the sign of ¢ is indeterminate).

Expressing f as — a/p by (22), we have from (20),

L

G= peoss’
_e b
T pcost’

Inserting the values of m, and /, from (11), we have
Gpcoss

sin Q sin w — cosQ cos w cos & = g e (26),
costinw+sichOchosi=—szosz ...(27).

Multiply (26) by sin Q and (27) by cos Q and add. Then
sinw=€cosi(GsinQ—FcosQ) ...... (28).

Multiply (26) by cos Q and (27) by sin Q and subtract. Then
COS w CO8 4 = — %’cosi(G cosQ + FsinQ)...... (29).

Hence, from (28] and (29),

(FcosQ — GsinQ)coss

tan w = FsinQ+ GeosQ 77
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This formula allows w to be calculated (¢ and Q being known).
The eccentricity e can then be found from (28) or (29), for all the
quantities w, p, 1, Q have now been evaluated. The semi-major
axis a can now be derived from (22). We have thus shown how
the elements a, e, 1, Q and w can be obtained from the apparent
ellipse.

There remains the problem of finding the period 7' and 7 (the
time of periastron passage). For any point on the apparent
ellipse corresponding to time ¢, we have the values of p and 6.

Now by (3),  tan (v + w) = tan (6 — Q) sec ¢,
from which the true anomaly v can be found. The eccentric

anomaly E can then be calculated from (6). The mean anomaly
M is now found from M—E

But M=n({— ), or

— esin K,

3‘;’ C=1) e (31).
Hence, for any time ¢, we have an equation (31) involving two
unknowns T' and 7. Theoretically two equations of the type (31)
are sufficient to determine 7 and r. In practice, however, their
values are generally determined by a least-square solution of
several equations of type (31).

M=

192. Zwier’s method of determining the elements of a visual
binary orbit.

The apparent ellipse is again supposed drawn—it is the ellipse
whose area is shown shaded in Fig. 130. The determination of
the elements can be carried out by (a) a graphical method, or
(b) an analytical method based on the former.

(@) Graphical method. Let C be the centre of the apparent
ellipse and § the primary star. The straight line joining C and S
cuts the apparent ellipse in A4,, which is the projection of
periastron in the true orbit, for C is the projection of the centre
of the true orbit. Since ratios are unaltered by projection, we

have CS:CA,=ae:a,
os _,
or CAI_ i

where e is the eccentricity of the true ellipse. Thus by.d'eteF-
mining C, the centre of the apparent ellipse, the eccentricity 18
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at once obtained. This procedure can be utilised as a check on
the value of e given by the formulae of Kowalsky’s method.
Let B,CE,bethediameter A, B
of the apparent ellipse con- ~ 32
jugate to the diameter 7;(/
\
\

S\ Auxiliar
4,CD,. It can be obtained By X kilipas
readily by drawing any
chord UW parallel to 4, D,
bisecting it at V and joining
Cto V. Let X be any point
on the apparent ellipse.
Draw XR parallel to OB, p
meeting CD, in B. Produce

RX to T so that
RT/RX = 1/(1—et)t =k

If this construction is sup-
posed made for every point
on the apparent ellipse, the
curve D\ A,B; A, D, will be
the result. This curve is an D,
ellipse, as will be shown, Fig. 130.

known as the auxiliary ellipse. In particular, we have

CB,=k.CB, ... (33),

where k is defined by (32).

In the true ellipse, the minor axis is the conjugate of the major
axis and this property holds for the corresponding projected
lines. Hence CB, is the projection of the semi-minor axis of the
true ellipse. Now consider the eccentric circle of the true ellipse.
If a chord of the true ellipse, parallel to the minor axis, is pro-
duced both ways to meet the eccentric circle, the ratio of the
chord of the eccentric circle to the chord of the true ellipse is
1/(1— e?)t or k. It follows from the construction of Fig. 130 that
the curve D, 4, B; A, D, is the projection of the eccentric circle on
the plane of the apparent orbit and is consequently an ellipse;
it touches the apparent ellipse at 4, and D,.

Let CA,, CB, be the semi-major and semi-minor axes re-
spectively of the auxiliary ellipse, and denote their measured
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values by o and 8 respectively. We must then have
B =|eoss] ... (34).
a
Now cost is positive or negative according as the motion is
direct or retrograde. So the inclination is determined by (34).
Also, the semi-major axis « is equal to the radius of the
eccentric circle, being the only radius not shortened by pro-
jection. But the radius of the eccentric circle is a, the semi-
major axis of the true orbit; hence

a=a N 1) 8

Thus a is obtained from the auxiliary ellipse.

Now the diameter parallel to the line of nodes is not altered
by projection ; hence the major axis 4,CD, is parallel to the line
of nodes. If SN is the direction given by position angle § = 0°,
then position angles are measured anticlockwise from the direc-
tion SN. Draw 8@ parallel to CA, as shown. Then the position
angle of one node is N8Q measured anticlockwise. But this angle
is greater than 180°, so, by the convention, Q is NSQ — 180°,

In Fig. 131 let SA4 denote the direction of periastron, and let
K AQ be part of a great circle through 4 and the pole K of the
great circle N LG which defines the
plane of the apparent orbit. Let A K
denote LG. Then since L4 = w,

ALG = i, AGL = 90° we have, by
the four-parts formula D,
tan A = tan w cos ¢

...... (36). ‘A
But SL defines the line of nodes
and SG defines the projection of

periastron. Hence, from Fig. 130,
the angle D, C4; must be . When
this angle is measured, the element
w is obtained from (36).

We have thus found, from the auxiliary ellipse, the elements
a, e, i, Q and w. The remaining elements T and 7 are found as
indicated in Kowalsky’s method.

Fig. 131.

() Analytical method. In practice the auxiliary ellipse is not
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actually drawn, but its properties are used. In Fig. 130 denote
the various semi-diameters as follows:

CA,=a,; CB=b,; CBy;=0b,; CAy=1a; CBy=8.
Let 8, be the position angle of 4, and 68, the position angle of E,.
Then E,CA4, is (6, — 6,).

Now CB, and C4,; are conjugate semi-diameters of the
apparent ellipse and, by the construction of the auxiliary ellipse,
it is evident that C4, and CB,; are conjugate semi-diameters of
the auxiliary ellipse. We have the well-known relations con-
necting pairs of conjugate semi-diameters:

atd+ B=a?+b2 000 . (37),
af=ab,sin(f,—0,) ... (38).
But, by (33), by = kb, ,

and we can write

(¢ + B)? = a.® + 2ka b, sin (6, — ;) + kb2 = ¢2 ...(39),
and

(e — B)2 = a,2 — 2ka, b, sin (6, — 6,) + k25,2 = h? ...(40),
whence e=3%{g+h) and B=3{g—-h) ... (41).

The apparent ellipse is supposed drawn; the diameter conjugate
to CA4, is also actually drawn. We can thus obtain the values of
e, a,, b and (6, — 6,) by measurement; since e is now known, k
can be calculated from (32). Thus the guantities ¢ and A can
be calculated and by (41) the values of « and B are deduced.
Consider now the angle D,C'4, which we denoted previously
by A; it is the angle between the semi-major axis CD, of the
auxiliary ellipse and the radius C4,. Now the co-ordinates of
4, referred to CD, and CB, as axes are (a,cos], a;sin}), and
hence we have
a,>cos®A | a,*sin?d

a2 + ﬂ2 = 1’
. _ B(at—a? ¥
from which tan A = 4 a<a———12 — /32) )
or, using (34) tanA = 4 cos¢ <af—7al”>} (42)
, g N a12 — BZ ------ .

As the sign of tan A is the same as the sign of tan (6, — 6,),
there are then two possible values of A, differing by 180°, satis-
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fying (42). Since the position angles of the directions C'4, and
CD;, are respectively 8, and Q and since D, 04, = ), we have

Q=06-x ... (43).
Now Q is defined to lie between 0° and 180° and since 6, is known
from measurement, the appropriate value of X satisfying (42) is
indicated by (43); this last equation enables Q to be found. The
value of w is then found from (36), which is

tan A = tan w cos <.
The remaining elements 7' and = are derived as before.

193. T'he masses of the stars,

The two elements of primary concern in this connection are
the period 7' (in years) and the semi-major axis a. From the
period, we deduce the mean angular motion n given by

n=2x/T ... (44).
It is to be remembered that the micrometrical measures of the
distances p between the companion and the primary are ex-
pressed in seconds of arc, and that consequently we obtain a
expressed also in seconds of arc. Let II be the parallax of the
binary. Then if d is its distance from us measured in astronomical
units, the value of II in seconds of arc is given by

M= écosec L (45).

Let a, denote the semi-major axis of the true orbit expressed in
astronomical units. Then a (in seconds of arc) is given by

a= %‘cosec v L (46).
Hence, from (45) and (46),
a
M= e (47)

Now the relation between the mean angular velocity » and the
linear semi-major axis a, is

nta,® = G (my + my),
where @ is the constant of gravitation and m; , m, are the masses
of the two stars. Hence, by (44),

i@
%1,2 = palmtm) (48).



356 BINARY STAR ORBITS

Consider now the earth’s orbit around the sun. We have a
similar equation to (48), namely,

a5’ _ Gm

P~ e
where m is the sun’s mass (we neglect the earth’s mass) and
a,, 7, refer to the earth’s orbit. But a, = 1 astronomical unit
and T = 1 year. If the sun’s mass m is taken as the unit of mass,
then (7 expressed in terms of these units is given by

G = 472 venes.(50).
Hence, for the binary, equation (48) becomes

where the stellar masses are now expressed in terms of the sun’s
mass as unit. Then, using (47), we derive

a3
17'1_3—11‘ ......
This equation enables the sum of the masses of a binary star to
be determined when the parallax and its orbit are known.

It is found that, for the majority of visual binaries, the mass
of the system is about twice the mass of the sun. When other
evidence is reviewed, it is exceptional to find the mass of a star
outside the range {%;m to 50m, where m denotes the sun’s mass.

1t is to be noted that only the sum of the masses can be cal-
culated from (51). It is only in comparatively rare instances,
when additional observational material of a different character
isavailable, that the individual masses of primary and companion
can be deduced.

my + my =

194. Dynamical parallazes.

The formula (51) can be used to determine the approximate
value of [T when this quantity cannot be measured by the usual
method. We can write

e %

T (m; + my)t

in which a and T are supposed to be derived from the observa-
tions of the visual orbit. If we put m, + m, = 2, in accordance
with the average result for known visual binaries, we obtain
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what is called the dynamical parallax. In any given instance,
of course, the value of (m; + m,) is actually unknown, but as the
cube root of this quantity is involved in the formula (52), the
resultant uncertainty in the calculated value of II, due to the
assumption concerning the mass of the system, is comparatively
small. Dynamical parallaxes supply valuable information for
certain investigations in which the distances of the stars are
required.

195. Spectroscopic binaries.

A binary of this class consists of two members too close
together to be resolved by the telescope into a double star; the
duplicity of the system is inferred from spectroscopic observa-
tions of radial velocity. In a binary system which has its centre
of gravity at G (Fig. 132),
each stardescribesanelliptic
orbit around G. In general,
the orbital plane will be in-
clined to the line of sight.
The orbital elements are
defined as for visual binaries
(Q, the longitude of the node,
is an exception, as it cannot
be defined at all, owing to
the absence of a definite
reference point on the plane
perpendicular to the line of

sight).

On page 213, reference has T
been made to the spectro- VT Sun
scopic method of measuring Fig. 132,

‘the radial velocities of the stars and, in particular, the formula
for the variable part of the radial velocity due to the earth’s
orbital motion round the sun was obtained. We shall suppose
‘here that this variable part is removed from the observed radial
‘velocity of a star; the value thus obtained represents the star’s
radial velocity relative to the sun.

In Fig. 132 let the straight line joining @ and the sun intersect
the sphere centred at G in 7'. The great circle of which 7' is the
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pole is HLM and we can refer to this plane, without ambiguity,
as the plane of the apparent orbit. Let K be the other pole of
HLM. But notice that Fig. 132 isinverted compared with Fig. 127.

Let r (in kilometres) denote the radius vector G'S, where S is
the position of one of the stars in its orbit with respect to (. Let
GB be the radius vector when the star is nearest @. Then SGB or
PQA is the true anomaly v. (We suppose that the direction of
motion is from A towards P.) L is the ascending node and we
put LA = w as before.

Let z denote the distance of 8 from the plane of HLM,
reckoned positive when 8 is on the same side of this plane as X.

Then z = rgin PM,

where KPM is the great circle are through P. But from the
triangle PLM, in which LP = v+ w, PLM = § and PML = 90°,

we have sin PM = sin (v + w) sin 4.

Hence z=rsin (v+ w)sint ... (53),

in which z is expressed in kilometres. The rate at which z varies
with the time, that is, g; , gives the radial velocity of the star S

relative to the centre of gravity @ of the system.

In general, the system itself will have a radial velocity with
respect to the sun; denote it by V. Then V is the radial velocity
of G, regarded positive when the motion is one of recession from
the sun. Hence the radial velocity R of the star S with reference
to the sun is given by dz
B=V+ & e (54).

The value of R is deduced from the spectroscopic observations.
When both stars are sufficiently bright to register their spectra
on the photographic plate, the radial velocities of both stars can
be inferred. For the present, however, we shall consider the type
of spectroscopic binary, only one of whose components enables
radial velocity measures to be made.

Now we have the following formulae of elliptic motion
applicable to the motion of the star S around Q:
a(l—e?)

r =
1+ ecosv
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r23§= h = {pa (1—e2)}t veeeen(56),
p=mn2a® L. (57),
where a is the semi-major axis in kilometres and » is the mean
angular motion. Now from (53),
%=fi—l—:sin(v+ w)sint + reos (v + w)sini%),
and we find easily from the preceding formulae that
dr mnaesin v dv na(l+ecosv)
-t THT (1—et)t -
Hence we obtain
dz _ masing
dt (1 e2)t
Thus from (54) we can express the radial velocity R in terms of
V, v and the elements of the orbit.

[cos (v + w) + ecosw]  ...... (58).

198. The velocity curve,

The orbital periods of spectroscopic binaries are generally
several days only, and as observations may be carried on over
several months, or even years, the orbital periods can be found
with great accuracy. From all the available observations a
curve is drawn, giving the relation between the radial velocity R
and the time (through an interval equal to the period). Fig. 133
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shows a typical velocity curve for which the period is 331 days;
it refers to the star H.R. 8800, the spectroscopic observations of
which were made at the Dominion Observatory, Victoria, B.C.
(Publications, vol. 1, p. 243). The curve between B and F repre-
sents the complete cycle of changes in the radial velocity B. At
C the radial velocity has its maximum positive value (about
60 kms. per second) and at E its maximum negative value
(about — 115 kms. per second).

Actually, it is found (we shall explain thislater) that the binary
is approaching the sun with a speed of 15 kms. per second. Thus
V = — 15 kms. per second. The line X ¥YZ parallel to the time
axis, in accordance with this value of V, is called the V-axis;
ordinates measured from this line to the curve give the appro-

priate values of dt For the present, we shall suppose that the

V-axis has been drawn.

There are many methods of deriving the orbital elements from
the velocity curve; we shall consider only one of these, which is
extensively used in practice.

197. Method of Lehmann-Filhés.
We shall write (58) as follows:

‘(% =K[cos(v+ w) +ecosw] ... (59),
where K=masme (60).
(1— et

Now dz/dt is a maximum when (v + ) is 0° and, as the radial
velocity is a maximum at C, the ordinate YC (which we denote
by @), measured from the V-axis, is given by

a=K {1+ ecosw)
Also, the radial velocity has its greatest negative value at E,

and this occurs when v + w = 180°. If 8 denotes the length of
the ordinate £Z, we have, numerically,

B=K (1- ecosw)
From (61) and (62), K=} (a + B)

eCOSw-—

B
B veeenn(64).
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The measurement of ¢ and B enables the values of K and
(e cos w) to be derived.

The V-axis is determined from the consideration that the area
BCD above this axis is equal to the area DEF below. This is
easily seen as follows. Any ordinate is dz/d¢ and the abscissa is
the time ¢. The area BCD is thus given by the integral

q J g—:‘ dt,

where the limits are the values of ¢ corresponding to B and D,
and ¢ is a constant depending on the units in terms of which the
area is measured. Hence this area is simply

q (zp — 2zg),
where z;, denotes the value of z corresponding to the point D on
the velocity curve. Similarly the area DEF is

q (zr — 2p).
But z, = 2z, since BF corresponds to a complete cycle, and
therefore the numerical expressions for the two areas are equal.
The drawing of the V-axis is then largely a matter of trial and
error; a first attempt is made and the areas above and below this
line are measured by means of a planimeter. After one or more
trials the position of the V-axis can be finally obtained to satisfy
the conditions of area. In Fig. 133 the position of the V-axis is
found according to the principles described, and the value of
V obtained is — 15 kms. per second. This is the radial velocity
of the binary (H.R. 8800) relative to the sun.

Again, the area CY D, which we denote by A,, is given by

Al == ZD s ZC ...... (65).
Now at C, the value of (v + w) is 0° and, from (53), 2z, = 0.
Hence Ai=2p e (66).

In the same way, the area DZE is equal to (z; — 2;), and as
2z, is zero, the area DZE is equal to the area CY D, that is, A,.
We can prove in a similar manner that the areas BCY and ZEF
are equal.

If v, and r, are the values of the true anomaly and radius vector
. in the true orbit at the point corresponding to D in Fig. 133,
then by (53) and (66),

A, =7 sin (v, + w)sing veereo(67).
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But, at D, the value of dz/dt is zero; hence by (59),

cos (v, + w) = — ecos w
e—B
=— " by (64).
A
Hence gin (v, + w) =+ Z—\_/;g.

Now in passing along the velocity curve from C towards E,
the radial velocity changes from being positive to negative just
before and after the pouint D. Hence, referring to Fig. 132, we
see that the point D on the velocity curve (Fig. 133) must corre-
spond to the point on the true orbit for which z has a maximum
positive value. Hence by (53), sin (v, + w) is positive and there-
fore —

. 2V af
sin (v; + w) = + atp (68).
Consider now the area ZEF, which we denote by A,. Then
Ay = zp — 2g,
or, since zz = 0, we obtain A, = zp

If v, and 7, refer to the point on the true orbit corresponding
to F on the velocity curve, we have

Ay =rysin (v, + w)sine ... (69).
But, at F, dz/dt is zero; thus
a —
cos (v, + w)=—€cosw = — ﬂ—g,
. 2vVap
d =-"—l" .. 7
and now sin (v, + w) aF B (70),

the negative sign being taken in (70), since F corresponds to the
point on the true orbit for which z has the maximum negative
value. Hence, using (67), (68), (69) and (70), we find

4, n

A, T
The procedure has been such that A, is expressed mathematically
as a negative quantity. If A, and A, are both regarded as positive
quantities, we can write
A _n

N veeen(T1).
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a(l-—e? . - .
But r, = a(l=-e) , with a similar expression for r,; hence
14 ecosy,

A; 14 ecosy,
A, 1+ ecosv,’
We can write this last equation as follows:
élzl+ecos(172_+_w—w)
B, 1+ ecos (1 + w — )
_ 1+ ecoswcos (v,+ w) + esin wsin (v, + w)
1+ ecos wcos (v, + w) + esin wsin (v, + w)’
which, by the use of (64), (68) and (70), reduces to

A, 20— VeB(a+ Plesinw

By 208+ VaB(a+ B)esinw
from which it is easily found that
2vaB A, — A,
aTB A TA, T
By measuring the areas A, and A, (which are both positive
quantities) the value of e sin w can be deduced from (72). But

we had also a—B
ecosw=——"7;
a+ B

hence this equation and (72) determine e and w.

To determine the time 7 of periastron passage we note that,
then, v = 0, and if 2, is the corresponding value of dz/d¢ the value
of 2, is given from (59) by

sH=K(Ql+e)cosw ... (73).

The value of 7, can now be found since K, e and w are all supposed
known. There are two ordinates of the velocity curve given by
(73). However, the ambiguity is resolved by noting that, at C,
v+ w=0, and at E, v + w = 180°. Thus if w is found to be, say,
60°, the value of v at C is 300° and at E is 120°; in this instance
periastron will correspond to the ordinate between C and D on
the velocity curve and so the time 7 (abscissa) of periastron
passage, measured from the epoch corresponding, say, to B, is
found.

Again, we have from (60) and (63),

na sin ¢ (74).

K=m=§(a+/3) e

esinw =
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Also if the period T is supposed known, n = 27/T, and from (74),

T (a+ B) (1— er)t
o .
The period 7 is usually expressed in days and e and 8 are
measures of velocities expressed in kilometres per mean solar

second. With these units, the last equation becomes (since
1 day = 86,400 seconds)

.. 216007
asing =

asini =

(e+B)(1—ex)t ... (75).

ko

This formula gives the value of the quantity (a sin 7) expressed
in kilometres, 7T being expressed in days. Unless the inclination ¢
can be derived by other means, the semi-major axis a, with
respect to the centre of gravity of the system, cannot be deter-
mined.

198. Two spectra visible.

When both members of the binary are sufficiently bright, the
velocity curve associated with each star can be analysed by the
previous, or any other, method. Let now a, denote the semi-
major axis of one orbit, with respect to the centre of gravity of
the system, and a, the semi-major axis of the other orbit. Then
the semi-major axis of the orbit of one star relative to the other
star is (a, + a,), which we denote by a,. If a, is expressed in
astronomical units and the period 7' in days, the sum of the
masses of the two stars (expressed in terms of the sun’s mass as
unit) is given by 365}\?

My + My = ap° (T)

But (a, sin ¢) can be found by means of (75) in terms of kilo-
metres, and from the analysis of the second velocity curve the
value of (a, sin ¢) can be similarly found. Since ¢, = a, + @, and
one astronomical unit = 149,600,000 km, formula (76) becomes,
on multiplying both sides by sin®s,
. 3, _ (Gsin t+a, sin_i)a 3651)'
(my + my) sin®s ( 149,600,000 ( T )

in which a;sins, a,sin¢ are expressed in km and 7 in days, or,
using (75),

(my + my)sindi = 1-295 x 10787 (1 _ez)% {(al +By) + (ay + BZ)}3,
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where «,, f, and «,, B, refer to the two velocity curves. On
writing K; = § (o, + B,) and K, = } («, + fB,), this last equation
is:

(my + my) sin® 4 = 10-36 x 108 T (1 — e2)} (K, + K,)® ...(77).

The value of (m, + m,) sin®¢ can thus be obtained.
Now, since G is the centre of gravity of the system,

ma, = M@y ... (78),
or m, (a, sin 2) = m, (a, sin z),
m &+ K
Hence, by (75), —t2_reor 79).
y (75) my o+ p K (79)

Thus the ratio of the masses can be derived. The formula (77)
for the sum of the masses involves the unknown value of the
inclination, and therefore the individual masses cannot be found
unless ¢ can be derived by other means.

199. The mass-function.

We return now to the case when only one spectrum is visible.
From (78), we have

B S U L
a,+ay, a, m+my’
.. myday®sin®4
S (agsing)d = S ——— eeees.(80).
( 1 ) (ml + 7n2)3 ( )

. But from (76), expressing a, in kilometres,

et m =( @ )3(365})3
1T 727 1149,600,000/ \ T/’
: 3
or m, + my = 3-985 x 10""% ...... (S1).

e Hence from (80) and (81), eliminating a,, we derive

my®sin®s  3-985x 10-%(a, sin ¢)®
(ml + mz)z - Tz ------

: The quantity on the right can be evaluated. The function on the
; left is the mass-function. It is generally given by computers of
1 spectroscopic orbits.
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200. The masses of spectroscopic binaries.

When one spectrum only is photographed, the information
concerning the masses of the stars is contained in the value of
the mass-function. When both spectra are visible, we have seen
that the velocity curves enable the ratio of m, to m, to be deter-
mined, and also the quantity (m, + m,)sin®<. Thus for any
individual binary, the actual values of the masses cannot be
found owing to the presence of the unknown inclination ¢ in
the formulae. Nevertheless, valuable information regarding the
masses i8 derived from statistical considerations. Consider a
large number of spectroscopic binaries of the same spectral type
distributed over the sky. We assume that the masses of such
binaries are much alike. If we take the average mass of a system
to be M and the number to be N, we can write, forming the sum
Z (my + m,) sin®s, from the known values of this quantity,

X (m, + my) sin®i = NMS,
where S denotes the mean value of sin3 7, with reference to the
random inclinations over the sky. The value of § is generally
taken to be 2/3. In this way we can derive an estimate of the
average mass M of a spectroscopic binary of given spectral type.

The most massive spectroscopic binary known is probably
the star HD47129, for which a mass function of 12-88 solar
masses is derived. Assuming that the two components have equal
masses, each star’s mass must exceed 50 times that of the sun.

201. Eclipsing binary stars.

If the line of sight is in or near the plane of the orbit of a
binary star, it is evident that during each orbital period the
component 4 will pass wholly or partially in front of the com-
ponent B, thus eclipsing the latter. The effect will be noted in
the diminution of the light of the binary. In the same way the
component B will cause a total or partial eclipse of 4. The analysis
of the light curve of such a star cannot be given here, and the
reader is referred to a more specialist text, such as A. H. Batten,
Binary and Multiple Systems of Stars (Pergamon, 1973) for
more detailed information. It may be added, however, that the
light curve yields the inclination, 4, and if both components can
be observed spectroscopically, the mass of each is obtained.
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EXERCISES

1. The greatest apparent diameter of a visual binary orbit is 1”-8; the
parallax is 07-072 and the period 50 years. If the orbit is circular, show that
the mass of the binary is 25/32 times the sun’s mass. [Lond. 1925.)

2. The semi-major axis of the orbit of Kriiger 60 is 2"-46; the period is
44-3 years; the parallax of the system is 0""-257. Calculate the mass of the
binary in terms of the sun’s mass. [Lond. 1928.)

8. The greatest angular separation of the components of » Cygni is 091,
the period is 47-0 years and the parallax is 0"'-05. Assuming that the orbit is
circular, calculate the mass of the binary.

4. Calculate the dynamical parallax of the binary 87642, for which
a=2"-87 and T = 317-5 years.

The trigonometrical parallax is 0”-088; comment on the difference between
the two values of the parallax. {Lond. 1926.]

5. Explain how the shape and position of the true orbit of a visual binary
can be deduced from observations of position angle and distance extended over
& whole period.

If @, b be the semi-axes of the apparent orbit, &, k the co-ordinates of the
primary referred to these semi-axes, show that the inclination s of the orbit to
the plane at right angles to the line of sight is given by

in? § = 22
P ey gy pay - I b
where M= (R4 k%) 4 (a® — b2)2 + 2 (a? — b?) (k2 — A?).

[Lond. 1922.]

6. Prove that if the complete apparent orbit of a visual binary has been
obtained, and on any chord PO through the primary O we take a point B
such that OR is a harmonic mean between PO and O, the locus of R is an
ellipse, of which the length of the major axis gives the latus rectum of the true
orbit, the direction of this major axis gives the direction of the line of nodes,
and the ratio of the minor to the major axis is the cosine of the inclination.

[Lond. 1923.]

7. The true period of an eclipsing binary is 3 days, and its velocity in the
line of sight (away from the sun) is 30 kms. per second. Show that its apparent
period is greater than the true one by 26 seconds. [Lond. 1923.]

8. A variable star has ecliptic co-ordinates A, 8. If 7 is the time of a maxi-
mum for an observer on the earth and 7' the corresponding time with respect
to the sun, show that, ¢ being the velocity of light in kilometres per second and
a the radius of the earth’s orbit in kilometres,

Ty== T—Zcosﬁcos(k— ®),
where ® is the sun’s longitude. [Lond. 1927.]



CHAPTER XV

OCCULTATIONS AND ECLIPSES

202. Occultations of stars by the moon.

As the moon’s sidereal period of orbital revolution around the
earth is about 27} days, it moves eastwards with reference to
the stars at an average rate of rather more than half a degree
per hour. In its passage over the stellar background it is con-
tinually interposing its disc between us and the stars, and the
sudden disappearance of a star in this way is called the occultation
of the star by the moon. After an interval, which depends on a
variety of factors, the star reappears. The disappearance and
reappearance of the star are generally referred to as immersion
and emersion respectively. The disappearance of the star and its
reappearance are instantaneous phenomena and, if the time of
one or the other is noted accurately, there is obtained at that
instant a definite relation between the moon’s position in the
sky and the position of the observer, it being assumed that the
star’s position is known accurately. Formerly, occultations were
utilised for the determination of longitude, but the introduction
of radio time-signals has rendered the occultation method
obsolete.

If the moon’s position is known accurately, the particulars of
the occultation of a star at any place can be predicted and, under
these circumstances, it is to be expected that prediction and
observation would agree. Now the moon’s position is predicted in
the almanacs for any instant of Ephemeris Time, while the
recorded time of the observation of an occultation will be in Uni-
versal Time. The study of such occultations, therefore, provides
aready means of determining the relationship between Universal
and Ephemeris Time, and, in particular, of deriving the correction
AT. The occultations of radio sources are also important, as
precise radio positions are difficult to measure. The first positive
optical identification of a quasar was made by timing the
cessation of its radio signals in the course of a lunar occultation.
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203. The geometrical conditions for an occultation.

Consider Fig. 134, in which the earth (regarded as a spheroid)
and the moon (regarded as a sphere) are shown with their centres
at E and M respectively. Let MS be the straight line joining
the moon’s centre and the star concerned at a particular instant.
Since the star can be regarded as at an infinite distance, the rays
from the star lying within a circular cylinder, whose axis is MS
and whose cross-sectional radius is equal to the moon’s radius,
will be stopped by the moon. Suppose that this cylinder inter-
sects the earth’s surface in the curve FGH (only part of the
complete curve is shown in Fig. 134); then, at the particular

instant concerned, the star will be about to disappear or reappear
behind the lunar disc, as viewed from points on the curve FGH,
and at all places on the earth’s surface within this curve the star
will be invisible. For an occultation of a particular star to be
visible at some point on the earth’s surface, the cylinder must
evidently intersect the earth’s surface.
. The plane passing through the earth’s centre and perpen-
. dicular to the line MS is called the fundamental plane; in the
- subsequent discussion the normal EC to this plane is taken to
be the z-axis. It is to be noted that, owing to the Earth’s
"rotation, the fundamental plane and the z-axis are continually
‘altering relative to fixed axes in the Earth.
As viewed from any point on the earth, the moon will be
“displaced, owing to parallax, away from the zenith by an angle
which may be just over 1° (corresponding to the maximum or
ihorizontal parallax); also its semi-diameter is 16’. Hence, for a
rstar with the same right ascension as the moon at any instant,
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an occultation may be possible at some place if the star’s de-
clination does not differ by more than about 14° from the moon’s
tabulated declination. By comparing the moon’s tabulated
positions in the almanac with the positions of stars, the selection
of stars, according to the criterion just mentioned, is made for
which occultations are possible.

204. Bessel’s method of investigating an occultation.

We now describe the method that is used for predicting the
circumstances of an occultation. We shall use the following
symbols:

2, 8—the apparent r.A. and Dec. of the star.
a,, ,—the apparent r.a. and Dec. of the moon’s centre.
P,—the equatorial horizontal parallax of the moon.
r—the moon’s geocentric

distance. All expressed in terms of the
k—the moon’s radius. earth’s equatorial radius as
p—the observer’s geocentric| the unit of length.
distance.

¢'—the observer’s geocentric latitude.

In Fig. 135 let E (the earth’s centre) be the centre of the
celestial sphere shown. The radius EC is drawn parallel to the
straight line joining the moon’s centre to the star; EC is the
z-axis and the plane DBA, of which EC is the normal and which
passes through the centre E, is the fundamental plane. Let EP
be the earth’s axis of rotation, P being the north pole. Since C is
the pole of the fundamental plane, the plane of any great circle
drawn through C is perpendicular to the fundamental plane; in
particular, the great circle joining C and P defines a plane per-
pendicular to the fundamental plane. Let it intersect the latter
in EB and the equator in F'; BPCF is defined to be the z-plane.
Since the star is regarded as at an infinite distance, EC is the
direction of the star, as viewed from the earth, and PCF is the
meridian through the star. The earth’s rotation carries this
meridian westwards, that is, in the direction #D. The positive
direction of the z-axis is defined to be £ A-—the eastward drawn
normal of the plane BPCF. Itisevident that A ison the celestial
equator and the R.A. of this point is, accordingly, 90° + a (since
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FA = 90° and TF = a, where 7 is the vernal equinox). Also FC
is 8 (the star’s declination). EB is the y-axis.

Let EX be the geocentric direction of the moon’s centre. Let
(=, y, z) denote the rectangular co-ordinates of the moon’s centre,

g}lzndamntal
ane
¢ il
é
D N
\:H
N z-axuz:z 9]

Fig. 135,

in terms of the earth’s equatorial radius as unit, with respect to
the co-ordinate system described. Joining X to 4, B and C by
great circle arcs, we have
z_ cosAX, y_ cos BY, i =cos OX.
LB} 4 1}
In the spherical triangle APX, we have:
PX =90°—8,, P4A=90°, XPA4=(90°+a)—a,.
We thus obtain, using the cosine-formula,
z=ryco8d sin ey —a) ... (1).
In the spherical triangle BPX, we have:
BP =FC =38, PX=90°-3§,,
BPX =BPA + APX = 180° + ¢ — q,.
Hence, by the cosine-formula,
y = r, [sin §, cos 8 — cos 3, sin 3 cos (¢; — a)]...... (2).
We do not require the corresponding expression for z.
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Since the fundamental plane is perpendicular to the straight
line joining the moon’s centre to the star, z and y are the
co-ordinates, at any instant, on the fundamental plane of the
centre of the shadow cast by the moon with reference to the light
from the star or, in other words, x and y are the co-ordinates of
the point of intersection of the axis of the cylinder with the
fundamental plane.

Also r, and P, are related by the formula

! =sinP, = .. (3).
41

For an occultation, (¢; — ) and (8, — 8) may be regarded as
small angles and, if (¢, — «) is expressed in seconds of time and
(8; — 8) and P, in seconds of are, the formulae (1) and (2) can be
written, using (3), with sufficient accuracy for purposes of pre-

diction, as 15
= P_( —a)eosd, ... (4),
3 — 8
Gk L ) (5).

We now consider the co-ordinates (£, n) of the observer with
reference to the fundamental plane. To avoid complications
in Fig. 135, we shall now suppose that EX defines the geo-
centric direction of the observer, so that PX is the observer’s
meridian. As before,

§= cos AX, 7~ cos BX.
P P

Now in the triangle APX, PX = 90° — ¢', P4 = 90° and
XPA=CP4— CPX. If h denotes the hour angle of the star at
the instant concerned, CPX = h, and therefore XPA4=90°—h.
Hence E=pcos¢’sinh ... (6).
Similarly, in the triangle BPX, we have BP = §, PX = 90°— ¢/,
and BPX = 90° 4 (90° — h) = 180° — h. Hence
n=p[cosdsing’ — sindcos ¢’ cosh] ...... (n.
Referring to Fig. 134 we see that, for immersion or emersion,
the point of projection of the observer on the fundamental plane
must lie on the circle of radius k in which the cylinder cuts the
fundamental plane. This condition is thus expressed by

@~ &P+ -9 =k ceeeee(8).
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For the calculation of occultations, the value of k (the moon’s
radius expressed in terms of the earth’s equatorial radius as
unit) is taken to be 0-2725.

205. The Besselian elements of an occultation.

The quantities, relating to the occultation of any given star,

are defined as follows:

T,—the v.T. of conjunction in R.a. of the moon and the

star.

H—the hour angle of the star at Greenwich at the instant
T,.

Y—the value of the y-co-ordinate [see formula (5)] at the
instant T,. At this instant, the value of the z-
co-ordinate is evidently zero.

z’, y'—the rate of change of = and y per hour of mean solar
time.

These quantities are called the Besselian elements of the
occultation. They are the basis for the prediction of the time of
the occurrence of the occultation at any particular observing
station. Occultation data is not included in the Astronomical
Ephemeris because it is inappropriate to an international al-
manac, since particular occultations are only obsgervable from a
limited region of the earth. Predictions of those occultations
which are visible in the British Isles, New Zealand and parts of
Australia are, however, given in the Handbook of the British
Astronomical Association.

206. The prediction of an occuliation at any place.

We shall assume that an approximate estimate of the uU.T.
of an occultation, visible at a particular point on the earth’s
surface, has first been obtained. We shall refer later to the
methods of deriving this estimated U.T., which we shall suppose
to be (T'y+1).

If A is the longitude of the observer west of Greenwich, the
hour angle % of the star is given by

h=H-A+t ... (9),

where ¢’ is the number of sidereal hours equivalent to ¢ hours of
mean solar time. Hence the values of £ and 5 at v.T. (Ty+1)
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can be calculated from (6) and (7) and the known terrestrial
co-ordinates of the observer, p and ¢’. The star’s declination is
given in the almanacs.

Also, since z = 0 at time T, (the moon and the star are then
in conjunction as regards right ascension) and y = Y at time T,
then at time (7', + t) we have

x=2't, y=Y+yt ... (10),

t being expressed in hours.

If (T, + t) is actually the true time of the occultation, the
equation (@— %+ (y— 2=k
must be satisfied by the values of ¢, », z, y just calculated. In
general, however, the estimated time is likely to differ by a
minute or two from the true time, and we proceed as follows.
We shall suppose that (7, + t) is the estimated time and

(Ty+ t + At) is the accurate time concerned, where At is ex-
pressed in hours. We calculate z, y and £, 5 for the u.T.

(T +1), as already indicated ; we denote these values by z,, y,,
¢, and 7, respectively. The values of z, y, £ and % corresponding
to the true time (7'y + £ + At) of the occultation are then derived

from =1+ AL, y=y1+y'.At}
E=¢+ &AL 17=1]1+7‘)'.At

where £, ' denote the rate of change in ¢ and » per mean solar
hour. Since (8) must be satisfied for the occultation, we have

[0, - &+ AL (2 = EVP+ [y —m+ AL (Y — 7)) 2= k2,

or, writing n—&=f, h—m=¢9 .. (12),
and neglecting squares of At, we deduce
kZ — fz _ g2

At = ) . A e 13).

2(fx" +gy —fE —g7') (13)

In this formula, k = 0-2725; f and g are derived from the
quantities z,, &, ¥, and 7, computed for v.T. (T, +¢); also
a2’ and ¥’ are known Besselian elements. To calculate A¢, it is
necessary to know the values of ¢’ and 5’. Now by (6) and (7),

IE%§=pCOS¢’COSh%}—: ...... (14),

, _dy

- ., dh
n Ea=pcos¢ sisthE veee--(15),
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in which di/dt means the change in the star’s hour angle
(expressed in circular measure) in one hour of mean solar time.
Now & increases from 0 to 27 in 23b 56 of mean solar time,

‘% = 5%—3 = 0-2625.
Write Q=pcosd’cosh ... (16);
then, from (6), (14), (15) and (16),
f& +gn' = 02625 (fQ + gésind)  ...... (17)
= 0-2625a,, say.
2 __ fa_ o2
Hence At = ST ﬁ_ gyf—- 092625%] ...... (18),

from which At can be derived.

If necessary, greater accuracy can be attained by regarding
(T + t + At) as the approximate time of the phenomenon, and
repeating the calculations in the way just described.

There are several graphical methods* which enable an ap-
proximate estimate of the time of the phenomenon to be made.
We can only refer very briefly to a method suggested by L. J.
Comrie. Referred to the projection, on the fundamental plane,
of the observer’s position as origin, the co-ordinates of the centre
of the shadow are (f, g). Draw a circle of radius £ and compute the
values of f and g for three times ¢, £, and ¢, in the neighbourhood
of T. In actual practice t,, {, and ¢, are always taken to be three
consecutive values of the series — 2b, — 1h Oh 4 1b 4 2h jpn
which O corresponds to T',. Plotting the positions defined by
these values of the co-ordinates (f, g), we obtain the track of the
centre of the shadow with reference to the observer’s position,
This track or curve is approximately a straight line. If an
occultation is possible, the curve will intersect the circle of
radius k in two points in general, and the corresponding times
can be deduced from the data with which the curve was drawn.
These times are the approximate times of immersion and emer-
sion. Formula (18) can then be used to derive the time of occur-
rence of the occultation.

The position angle y (measured eastwards from the north

* For example, see W. F. Rigge, The Graphic Construction of Eclipses and Occulta-
tions (Loyola Univ. Press, Chicago, 1924).
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point of the moon’s disc) corresponding to immersion or emersion
is given from the figure by

siny = —"7, COSX=‘-7Z ...... (19),

where the values of f and g now refer to one or other of the points
of intersection of the track and the circle.

In the Handbook B.A.A. predictions of occultations visible at
Greenwich and Edinburgh are given. The approximate time of
the phenomenon at a place AX degrees west and A¢ degrees
north of Edinburgh, say, can be derived from the formula

Approx. time = (Predicted U.T. for Edinburgh) + aAA + bA¢,
where a and b are quantities tabulated for each occultation. This

approximate time serves as the basis for the accurate prediction
according to the method already described.

207. The reduction of occultations.

Let T denote the U.T. at the observed instant of an occultation
Since the moon’s ephemeris is given in E.T., the latest approxi
mation to AT is first applied to the time of observation. The
values of the moon’s right ascension and declination are thex
derived from the almanac. From (4) and (5) we have

1
z= P§ (¢ — a) cos B, veeeen (20),
1
5 -3
y= —~—1P1 ...... (21),

in which e,, 8, and P, are the moon’s right ascension, declination
and horizontal parallax corresponding to time 7'; (e, — a) i
expressed in seconds of time and (8, — 8) in seconds of arc.
Instead of (21), a more accurate formula is usually employed;
it is derived as follows. From (2) and (3) we have

_ sin (3, — §) 2 . ., — @

= “en P, +SinP10058151n8sm2< 5 ),
or—(8; — 8), (¢; — a) and P, being expressed as indicated
above—

8 — — .
y="p o) (o “)2"1?,? 202 150 (4, — o) sin 17,

or, using (20), y= 8_11';1_8 %2%%%@ ceeeea(22).
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The formulae (20) and (22) enable us to calculate the quantities
z and y corresponding to time 7.

If & is the hour angle of the star at 7', we calculate the values
of ¢ and » by means of (6) and (7).

We then derive f and g for the time T', where

f=z—¢ g=y—7vn ... (23).

In Fig. 136 let X be the star’s position at time 7. We assume
that, owing to an error in mean longitude, the moon’s tabulated
right ascension and declination are in error. Let M be the
centre of the moon, according P
to the tabulated values of
o, and 8; at time 7'. The an-
gular distance X M, calculated R
from the erroneous values of «;
and 9, , will thus be somewhat
different from the observed

angular distance, which is the
moon’s semi-diameter S. De-
note the arc XM by §'.
Denoting the angle PMX
—the position angle of the
star with respect to M—by y,

we have from (19) and (23) Fig. 136.

tany =flg=(-0/ly—n) ... (29)

from which y is calculated.

Also, - 1S = (x — £) cosec x = (y — n) sec x,
where §’ is expressed in circular measure. We then calculate S’.

In Fig. 136 let NM R be the great circle determined by the
moon’s orbital plane. Let p denote the position angle PMR.
Hence the angle XM R is p ~ y.

pis calculated as follows. Let A«, and AS; denote the variation
of «, (in seconds of time) and of §, (in seconds of arc) in 1 minute.
These quantities are obtained from the almanac. Then the
components of the moon’s motion along its orbit are, in circular
measure, 15Aa;sinl’’cosd; (along the parallel of declination
through M) and A8, sin 1" (along the meridian M P). Hence
15Aa, cosd,

tanp = As,
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To summarise up to this point: In Fig. 136 we know for the
observed instant 7" of the actual occultation (i) the position of the
star X, (ii) the angular distance XM (= 8’) and (iii) the angle
XMRE (= p — x). Now at the time, 7’, of occultation the angular
distance of the star X from the moon’s centre is S (the moon’s
semi-diameter). Since we know the position of X definitely,
the moon’s centre must lie somewhere on the small circle (cut-
ting X M at V) whose centre is X and whose angular radius is S,
Let M, be the actual position of the moon’s centre. Draw M,U
perpendicular to NMR. Then MU represents the correction to
the moon’s tabulated longitude (measured along NMR) and
UM, the corresponding correction in latitude. Denote MU by
AX and UM, by AB. These quantities are small compared with
S (or XV) and so the arc VM (or 8 — 8) is small. The
moon’s true centre M, is, accordingly, close to V so that M,V
is perpendicular to XM. Projecting MU and UM, on MV
we obtain

8 —8=Axcos(p—x)+ ABsin(p—x) ...... (26).

Several observations of the same occultation made at different
places provide the corresponding number of equations of the
form of (26). The solution, by least squares, leads to the values
of the corrections AX and AB.

208. Eclipses of the moon.

A lunar eclipse occurs when the moon passes into. the shadow
(with reference to the light from the sun) cast by the earth. The
phenomenon can only take place when the earth is directly
between the sun and the moon, that is to say, when the moon is
in opposition ; this corresponds to “full moon”.

If the moon’s orbital plane coincided with the plane of the
ecliptic, lunar eclipses would occur at every full moon. As,
however, the orbital plane is inclined at an angle of about 5° to
the plane of the ecliptie, the conditions for the occurrence of a
lunar eclipse require that the moon must be on or near the
ecliptic when full, that is, the moon must be at or near one of
the nodes.

When the whole of the moon’s disc is obscured, the eclipse is
said to be a fotal eclipse; when only a part at most is obscured,
the eclipse is a partial eclipse.
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In Fig. 137 let S and E be the centres of the sun and earth
respectively. A cone can be drawn whose generators are the
external tangents to the solar and terrestrial globes; the vertex
of this cone is at ¥, and that part of the cone between XV and
YV (dark shading) is called the umbra. In the figure the moon’s
orbit is shown and, if the moon passes completely within the
umbra, a total eclipse occurs.

Another cone can be drawn whose generators are the internal
tangents to the solar and terrestrial globes; its vertex is W. The
parts of this cone represented by DXV and CYV (lightly
shaded) receive a varying amount of illumination from the sun;
along XD and YC theillumination is complete and along X V and
Y Vitis zero. The lightly shaded portions of the internal cone form
the penumbra, and when the moon passes through the penumbra
towards the umbra its brightness gradually decreases until it is
completely obscured when it is wholly immersed in the umbra.

209. The angular radius of the shadow cone at the moon’s geo-
centric distance.

In the remainder of this chapter, we shall use the following
notation:

P—equatorial horizontal parallax of sun.
P,—equatorial horizontal parallax of moon.
S—sun’s semi-diameter.
S§;—moon’s semi-diameter.
r—geocentric distance of sun.
r,—geocentric distance of moon.
s—angular radius (with respect to the earth’s centre) of the
umbral cone at the moon’s distance.
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We assume that r and r, are expressed in terms of the earth’s
equatorial radius as the unit of distance.

Consider Fig. 138. The radius of the umbral cone at the moon’s
distance when a total eclipse is occurring is M N. The angular

A A}

B // O’T‘bit
Fig. 138,
radius, 8, with respect to ¥ is NEM. Denote XVE by ». Then
we have XNE = s+ 0.

But XNE is the angle subtended at the moon by the earth’s
radius and, regarding the earth as a sphere, we see that
XNE = P,. Hence P=s+v .. (27).

Again, SEA = XAE + v. But SEA is the angle subtended at
the earth by the sun’s radius and is therefore the sun’s semi-

diameter S. Also, XAE is evidently the sun’s parallax P. Hence

8S=P+v» .. (28).
From (27) and (28) we have
§s=P+P -8 ... (29).

In a similar manner it is easily shown that the angular radius
s’ of the penumbral cone is given by
§=P+P+8 ... (30).
The formulae for s and s’ in (29) and (30) give the angular radii
of the geometrical shadows concerned. It is found, however,
that the earth’s atmosphere increases, owing to absorption, the
theoretical radii by about 2 per cent. For the prediction of lunar
eclipses we use the expressions
s=4HP+P-8) ... (31),
§=58P+P+8) ... (32).
As an example, we find from (31), using the following values
P=9", P,=57, 8 =16, that, very nearly,
s =42,
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The angular diameter of the umbral cone is thus 84’. If the
eclipse is central, that is, if the axis EV of the shadow cone passes
through the moon’s centre, totality will last while the moon’s
centre moves through the angle 84’ — 28, or 52’ if we take
8, = 16’. Now the interval between two consecutive full moons
is about 30 days; hence the moon’s angular motion relative to
the shadow is about 12° per day or 30’ per hour. Hence the
central eclipse which we have been considering will last for
about $Z hour or about 1} hours.

The value of s varies from a maximum of 46”-7 to a minimum
of 38':5; the former value occurs when the moon is nearest the
earth (that is, in perigee) at the same time as the earth is
furthest from the sun (that is, in aphelion); the minimum value
occurs when the moon is in apogee and the earth in perihelion.

The length EV of the earth’s shadow is easily obtained.
From (28), v = § — P, so that

EV = EX cosec (S — P).
Putting S = 16’, P = 9" and EX = 3960 miles, we find that
EV = 859,000 miles.

210. The ecliptic limits.

We consider now the effect of the inclination to the ecliptic
of the moon’s orbital plane in restricting the number of eclipses.
In Fig. 139 let NM be the
great circle, on the celestial
sphere centred at E, which
defines the plane of the
moon’s orbit. Let M and C
be the centres of the moon
and the shadow respec-
tively, when an eclipse is
about to take place. Let C;
be the position of the sha-
dow’s centre when the moon
is at the node N. Denote
NC, by ¢ and let ¢ be the
time required by the moon
to go from N to M, and for
the shadow’s centre to go from C; to C. Now the geocentric

Fig. 139.
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longitude of C is the sun’s longitude plus 180°. Hence, in finding
the maximum value of ¢ for which an eclipse of some kind is
possible we are, in effect, finding the maximum angular distance
of the sun from the other node.

Let 6 be the rate at which the sun’s longitude increases, and
é the angular velocity of the moon in its orbit; for simplicity,
we shall assume @ and ¢ to be constant. Then

NM =¢t, NC = ¢+ 6.
If 7 denotes the angular distance CM and ¢ the inclination
MNC, we have, regarding the triangle M NC as plane,
9= (£ + 08)2 + U2 — 24t (£ + 01) cosii,
or n?= £ — 2£t (dcosi — O) + 12 (624 2 — 204 cos 7).
1t is evident that 7 is a minimum when ¢ is given by
£(doosi— 0) — ¢ (02 + ¢? — 204 cos i) = 0,

and, calling this minimum 7,, we have

¢dsin g
No = (02+ qu _ 26<ﬁ cos ’L)i ...... (33),
or, if ¢ is the ratio 6/$, we can write (33) in the form
E=mo(l— 2qcosi+ g®cosects ... (34).

Now ¢ is the ratio of the earth’s orbital angular velocity to the
moon’s orbital angular velocity, or the ratio of the moon’s
sidereal period to the year; taking mean values, ¢ is about 3/40
Also ¢ = 5°-15. Hence

£=1035 e (35).
If the moon is about to enter the umbral cone,
T =§ + Sla

the quantity s being given by (31). For a partial eclipse to be
possible it is evident that { must not exceed 10-3 (s + 8;). Foi
a total eclipse, { must not exceed 10-3 (s — 8,). Taking the
following numerical values,

8 =960", S, =933", P=9", P,=3423",
we find that, for a partial eclipse to be possible, we must have
£§<10:3[3 (P + P — 8) + 8y,
or £<9°9,
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and, for a total eclipse to be possible,
§<103[35(P+ P, —8) -8y,
or £< 4°6.
The value of ¢ required for a penumbral eclipse of the moon to
take place may be derived in a similar manner.

An alternative way of examining the conditions for a lunar
eclipse is to calculate the ecliptic limit. This is defined as the
maximum possible distance of the sun from the node at the
time of opposition in longitude (full moon). The method of
calculation is almost identical to that for solar eclipses given in
section 214. Since all the quantities on which it depends are not
constants, the ecliptic limit is a variable quantity. Its maximum
value is 12°3 (called the superior ecliptic limit) and its least
value is 9°-6 (called the inferior ecliptic limit).

211. Calculation of a lunar eclipse.

We shall suppose that the conditions for a partial or total
eclipse are satisfied. In Fig. 140 let M be the moon’s position on
the celestial sphere centred at E, and C the centre of the earth’s

Fig. 140.

shadow. Let (e, 8;) and (a,, 8,) be the equatorial co-ordinates
of the moon’s centre and of C respectively. Denote CM by 5
and PCM by Q. Then we have

sin 7 sin @ = cos &, sin (; — ay),

sin 7 cos @ = sin 8, cos &, — cos 8, sin §;, cos (¢; — a,),
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or, with sufficient accuracy,
7 8in Q@ = (a, — a,) 08§, eee--.(36),
neos@=8,-8, ... (37).
As C is diametrically opposite to the sun’s centre, the R.a. ¢, of

C is equal to the sun’s rR.A. 4+ 12b, and the declination 8, of C is
equal to — 3 (5 being the sun’s declination).

Write z = (@, — ag) cos 8, = 9 sin ceeeee(39),
y=28 —3§, =qcos@Q ... (39).
Let 2’, ' denote the hourly changes in « and y. These are found
by computing x and y at intervals of an hour, round about the
time of the eclipse. Let T, be a convenient moment near oppo-
sition (say, the E.T.—to the nearest hour—of opposition in
right ascension) and let x,, y, be the computed values of z and y

at this moment. At E.r. (T, + ¢), where ¢ is in hours, we can
write

=x,+ &', y=1y,+ y't.
Hence, by (38) and (39),
7 8in Q =z, + 2'¢,
ncosQ =y, + y't.
Write zo=msin M, yy=mcosM ... (40),
' =nsinN, y =ncosN

From the known numerical values of z,, y,, 2’, ' the values of
m, M, n, N can be derived. We then have

nsin Q=msin M + ntsin N ... {42),

neos@=mcos M +ntcosN ... (43).
Squaring these equations and adding, we obtain
72 =m? 4 2mnt cos (M — N) + n%?,

from which
t=—"cos (M~ N)+ [,72 — m’sm: - N)]*
n n
...... (44).
Writing msin (M — N) = ynsin veeee.(45),

formula (44) becomes

=_" - 1
t n CO8 (M—-N)+ ncos:/r ...... (46).
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The conditions for an eclipse can now be inserted. For the
first and fourth contacts (when the moon is just entering or just
leaving the umbra),

1= (P+P—8)+ 8.
Inserting this value of 7 in (46), we obtain the times of first and
fourth contacts.

For second and third contacts (the beginning and end of
totality), the value of 5 is given by

=4 E+ P —-8-8,
and when this value of 7 is inserted in (46), the times of the
beginning and the end of the total phase are derived.

The time of the middle of the eclipse, whether partial or total,
is given by Ty + ', where

t'=—mcos(M—N).
n

The magnitude of a partial eclipse is the fraction of the moon’s
Jiameter obscured and is given by
7 — msin (M — N)
28, )
where msin (M —N) is taken positive for the time of mid-
eclipse and 7 is the mean of the values used for first and last
umbral contacts.

There still remains the prediction of the position angle of the
point on the moon’s dise, where the eclipse is just beginning or
ending. Referring to Fig. 140 we see that the figure has been
drawn to represent fourth contact, when the moon is just about
to pass out of the umbra. The great circle joining the point of
contact of the moon’s disc with the umbra and the centre of the
umbra makes an angle PM(C with the meridian PM through
the moon’s centre. As position angles are measured in the sense
N E S W, the position angle 8 of the point of contact is given by

8 = 360° — PO,

or 0 = 180° + CHIR.
But since CM is small, POM is approximately equal to CHR.
Hence 6 = 180° + Q.

Q is determined from (42) and (43), the value of ¢ for fourth
contact being inserted in these equations. In a similar way, the
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position angle of the point on the moon’s disc where the eclipse
begins can be derived.

212. Eclipses of the sun.

An eclipse of the sun is due to the interposition of the moon
between the sun and the earth. The moon must then be at or
near conjunction with the sun, that is, it must be new moon.
Also, owing to the inclination of the moon’s orbit to the ecliptic,
it is evident that an eclipse cannot take place unless the moon is
on or near the ecliptic, that is to say, the moon must be at or
near one of the nodes.

As the moon’s radius is much smaller than that of the earth,
the earth cannot lie wholly within the shadow cone formed by
the external tangents to the solar and lunar globes; conse-
quently, an eclipse of the sun is visible only from a limited area

A

B
Fig. 141.

of the earth’s surface. This is illustrated in Fig. 141, in which the
shadow cone formed by the external tangents is shown shaded
with its vertex at V; this shadow cone is called the umbra. As
in the case of lunar eclipses, the penumbra is obtained by drawing
the internal tangents. For points on the earth’s surface between
H and K, within the umbra, the moon presents a complete
barrier to the light from the sun and the eclipse is then said to
be a total solar eclipse. At a point such as L, the moon evidently
conceals only part of the solar disc; the eclipse is then said to be
a partial eclipse. The condition for a partial eclipse at L is that
L must be in the penumbra.

That total eclipses of the sun are at all possible is due to the
fortunate fact that the moon’s angular diameter is at times
greater than that of the sun; the moon then covers a greater
area of the sky than the sun. As the moon’s orbit has an eccen-
tricity of about 0-055, and the mean angular diameters of the
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moon and sun are nearly equal, the value of the moon’s diameter
can fall below that of the sun (this occurs when the moon is in
the neighbourhood of apogee) and consequently the moon cannot
completely cover the solar disc; under these circumstances the
eclipse, instead of being total, is said to be annular. This is
illustrated in Fig. 141, where the centres of the sun, moon and
earth are now supposed to be at S, M and E’ respectively; for
any place between H' and K’, the eclipse is annular.

213. The angle subtended at the earth’s centre by the centres of the
sun and moon at the beginning or end of & partial solar eclipse.

In Fig. 142 the internal tangents between the sun and the

moon are shown, forming the penumbra. Suppose that the
tangent AB is also tangential to the earth’s surface at C. Then

Fig. 142,

to an observer at C the sun’s surface is just wholly visible, and
the geometrical circumstances illustrated in the figure evidently
refer to the beginning or end of the partial phase, when C is just
about to enter or leave the penumbra. Let D denote the angle

MES. We have D = BES + MEB

But under the circumstances depicted, M B is very nearly per-
pendicular to EB, so that MEB = §,; hence

D = BES + 8,.
Also BES = OBE + EOB ... (48).
But OBE = CBE = horizontal pafallax of B, or very nearly the
horizontal parallax of M ; thus OBE = P,.
Again, EOB = E0OA = AES — EAC,
or EOB=8 - P.
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Hence, from (47) and (48),
D=8+8+P—-P ... (49).

Thus D can be evaluated at the time of any eclipse.

214. Ecliptic limits.

Consider Fig. 143, in which the moon and sun have the same
geocentric longitude at M and S—corresponding to new moon—
near the descending node N, .

Let B denote the latitude SM K

and & the inclination MN S
of the moon’s orbit to the
ecliptic. Let M, and S, be
the positions of the moon
and sun a littlelater. Denote
MM, by y. Regarding the
triangle M NS as plane, we
see that the moon’slongitude
bas increased by MM, cos:
or y cos z, and the sun’slongi-
tude by 88;. If m is the
ratio of S5, to ycosi, we
have

S8, = mycoss

Fig. 143.

Also, SN, = Bcot 1 and MN, = Bcoseci, so that
S; N, = Bcot i — my cos s,
and M, N, = Bcosect—y.

Let D denote the angular distance M, S,. Then from the triangle
M, N,8, (regarded as plane), we have

D? = (,800(31:— my cos t)2 + (f cosec 1 — y)?
— 2(Bcot s — my cos i) (B cosec s — y) cos 1,

which may be written

. 2
D?= (1— 2mcos?s + m?cos?q) {y— T—om ci‘flzn-: m”cos%’}
B2 (1— m)2cos?s

1— 2mcos?i + m2cos?s”’

+
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Evidently the minimum value of D (denoted by D,) is given by

D B(1—m)coss
°~ (1— 2mcos?i + m? cos? i)’
B(1—m)cost

> 07 (sin?4 + (1— m)? cos? i} cenee.(B1).

Define an angle j by .
tanj — A0 veeenn(52).

1-m
Then we have Dy=Bcosj (53).

In (52), tani is a small quantity (about 1/11), since ¢ = 5°-15;
also m = 3/40 approximately. Using these values in (52), we

deduce that €os j = cos ¢ — 0-0006 cos 1,

so that, with sufficient accuracy, we can write simply

2

For an eclipse to be possible, D, must not exceed the value of D
given by (49); hence

Do=/3cosi=f3(l—— 2sin*ﬁ>.

ﬁ(L-zgmgy<s+sT+Pr-P,

. . . L .t .
or, with sufficient accuracy, since sin? 5isa small quantity,

ﬁ<s+&+a—P+2w+&+A-Pmm%.4&)

To evaluate the last term of (54), it is sufficient to use the mean
values of the quantities concerned; the last term is thus 0’-3.
We can also, with sufficient accuracy, put P = 0’-1. Hence

B<S+8+P+02 ... (55).

The maximum values of 8, 8, and P, are 16'-3, 16’-8 and 61'-5
respectively. Hence, from (55), if the moon’s north or south
latitude B8 at the time of new moon is greater than 1° 34’-8, a
solar eclipse is not possible near this particular conjunction.

The superior ecliptic limit is defined to be the maximum
distance of the sun from a node at the time of new moon if an
eclipse is just possible. In Fig. 143 let # denote S¥,. Then we

bave sin x = tan S cot ¢ eees..(58).
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 is thus a maximum when B is greatest (1° 34'-8) and ¢ is least
(4° 58-8). With these values, x = 18°-4. Hence, if the distance
of the sun from a node at new moon exceeds 18°-4, an eclipse is
impossible.

To calculate the inferior ecliptic limit, we take the minimum
value of 8 and the maximum value of 4. The minimum values of
8, 8, and P, are 15’-8, 14’7 and 53’-9 respectively; hence, from
(55), the minimum value of 8 is 1° 24"-6. The maximum value of
118 5° 18"-6. Hence, from (54), the inferior ecliptic limit is 15°4.
We thus see that if the sun is within 15°-4 of a node at new moon
an eclipse must take place.

215. The Besselian elements for a solar eclipse.
The method used in the prediction of eclipses is analogous to
that already described in connection with occultations.
Through the earth’s centre E, let a line EC (Fig. 144) be
drawn parallel, at a given moment, to the straight line joining

Fundamental
Plane o
i

Fig. 144.

the centres of the moon and sun and meeting a sphere, centred
at E, in C. EC is the z-axis and the plane DBA (shaded), to
which EC is normal at K, is the fundamental plane. If P is the
north celestial pole, the plane of the great circle through C and
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P intersects the fundamental plane in EB. As in the corre-
sponding figure for occultations, £4 and EB are the = and y
axes respectively.

(i) The elements x, y and d. We shall take (e, 8) to be the
apparent right ascension and declination of the sun and (e,, §,)
the corresponding co-ordinates of the moon.

Let (a, d) be the right ascension and declination of the point
C on the sphere.

Let (x, y, 2) be the rectangular co-ordinates of the sun, with
reference to the axes described, in terms of the earth’s equatorial
radius as the unit. Then if X is the sun’s position on the sphere,

x=rcos AX, y=rcosBX, z=rcosCX ...(57),
r being the sun’s geocentric distance.

Now A4 is the pole of CPB and must therefore be on the
equator; we have, then, P4 = 90°, FA = 90°. Hence the right
ascension of A is 90° + a and therefore XPA = 90° +a—a.
As PX = 90° — §, we have, from the first of (57), using the

cosine-formula, z=rcosdsin (¢ —a) ... (58).

In the triangle PBX, BP =d. Also, since APB = 90°,
XPB =180° + a — «. Hence

y =r[sindcosd — cosdsindcos (¢ — a)]...... (59).
In the triangle PCX, PC=90°—d, PX =90°-§ and
XPO=a— a; hence

z=r[sindsind + cos 8 cosd cos (& — a)]...... (60).
In the same way we derive the corresponding equations for the

moon: .
x, = r, cos &, 8in (e, — a),

4, = r, [sin 3, cos d — cos §, sin d cos (e; — a)],
2, = r, [sin &, sin d + cos , cos d cos (e, — a)].
But since the z-axis ig parallel to the line joining the centres of
the moon and sun, we must have
T=2, Y=th-.
The co-ordinates (z, ¥) or (2, ¥,) are the co-ordinates of the centre
of the shadow on the fundamental plane. Hence
rcosdsin (@ — a) = r, cos §; sin (¢, — a) ...... (61),
r [sin 8 cos d — cos 3 sind cos (¢ — a)]
= 7, [sin 3, cos d — cos §, sin d cos (¢; — a)]...(62).
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At any instant, the values of 7, r), @, §, ¢, and 3, may be
presumed known; the formulae (61) and (62) thus enable us to
calculate a and d. These formulae, however, can be put in a
simpler form, since, at or near the time of eclipse, @ and & are
little different from ¢, and 9, respectively. Let us write

r
P b e (63),
which can also be expressed as
sin P
= gn—j): ...... (64),

sinee, by definition, 1/r = sin P and 1/r; = sin P;. Thus b can
be calculated at any time; it is a small quantity of the order of
1/400. Writing [, — @ + (¢ — a)] for (e, — @) on the right of
(61) and expanding, we find
sin (@ — a) {1 — bsec 3 cos 3, cos (¢, — a)}
= bsec & cos , cos (¢ — a) sin (a; — a),
or, with sufficient accuracy,

a=a—bie"18_°%§(al—a) ...... (65).

In a similar way, from (62), we find that
b
d=8_1_—-_b(81—8) ...... (66).

The calculation of the quantities @ and d is made at intervals
of one hour.

In addition, the variations «’, y' (per hour) of the co-ordinates
(z, y) of the centre of the shadow arerequired but these are easily
derived from the differences of the values of x and y tabulated
in the Astronomical Ephemeris.

(ii) The element p. For any meridian the hour angle of C
(Fig. 144) is the hour angle of the vernal equinox 7 less the right
ascension of C. In particular, if u denotes the hour angle of C
for the Ephemeris meridian when the Ephemeris sidereal time
is G, then u = G — a. Hence, a being found from (65), the value
of n can be calculated at any instant. Also the values of n’ (the
variation of u per hour) can evidently be found by simple
processes.
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(ili) The elements f,, f,. In Fig. 145 let CD be the section of
the fundamental plane with the plane of the paper. Consider
first the penumbral cone with its vertex at ¥,. Let f, denote the

Fig. 145.

angle AV,8 or FV,C. Let R be the linear radius of the sun and
k that of the moon. Then

sinfi =gy, = v, 1= ST
But during any phase of the eclipse, SM = r — 7, with sufficient

accuracy. Hence, using (63),
. R+k
sin f; = Fa=e 0 (67).
In (67), the numerator (R + k) is a constant, being the sum
of the linear radii of the sun and moon.
Denoting the semi-vertical angle, BV, M, of the umbral cone
by f., we derive, in the same way,

sin f, = 1(?'1 ") ...... (68).

The angles f, and f, are easily calculated from (67) and (68).

(iv) The elements];,,. Referring to Fig. 145, we see that M F
is the z-co-ordinate of the moon’s centre, with reference to the
axes already described. Hence MF = z,. Also V, M = k cosec f,.
Denoting V, F—the z-co-ordinate of the vertex of the penum-
bral cone—by ¢,;, we have

g =2z+kcosecfy, = ... (69),
and similarly, if ¢, denotes the z-co-ordinate of the vertex V, of
the umbral cone, =12 —kcosecfy = ... (70).
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In each instance, ¢, and ¢, are algebraic quantities measured

positively in the sense FM (the positive direction of the z-axis).
Let I, and I, denote the radii of the circles in which the
penumbral and umbral cones intersect the fundamental plane.

Then L, =FC=ctanf, and [, = FR=cytanf, ...(71),
or, using (69) and (70),
ly==ztanf, + ksecfy, ... (72),
l,b=ztanf,—ksecf, ... (73).
These formulae—(72) and (73)—enable the numerical values of
I, and [, to be calculated.

The quantities z, y, sind, cosd, u, !, and [, are called the
Besselian elements of the eclipse. They are first calculated at
hourly intervals and then subtabulated at intervals of 10
minutes in the Astronomical Ephemeris. Single values are also
given of the quantities tanf;, tanf,, ', and d’ as they are con-
stant to the precision required. We now show how these elements
are used to predict the circumstances of the eclipse.

216. Eclipse calculations for any station.

In Fig. 145 let KH be the intersection, with the plane of the
paper, of the plane through the observer parallel to the funda-
mental plane. Let (£, 5, {) be the co-ordinates of the observer
at any instant with reference to the fundamental axes. Then the
plane K H is given by z = {. Consider now the radii of the circles
on the plane z = {, given by the intersection of this plane with the
penumbral and umbral cones, and let L; and L, be these radii
respectively. Then in the figure L, = GH and L,= GT. We
then have, since F'G = ,

L= (¢, — {) tanf,,

Ly = (¢, — {) tan fy,
or, using (71), Liy=1l,—{tanf, ... (74),

Ly=0lL—{tanf, ... (75).
L,is always positive. Since ¢, has been used inits algebraic sense,
L, is negative when the vertex V, of the umbral cone is situated
(as in Fig. 145) to the right of G. This is the geometrical condi-

tion that certain areas on the earth’s surface can lie within the
umbral cone. Hence for any particular observer, at a distance {
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from the fundamental plane, a condition for a total eclipse is
that L,, computed by means of (75), shall be a negative quan-
tity.

Let ¢ and p be respectively the geocentric latitude and
distance of the observer, and A his longitude west of Greenwich.
In Fig. 144 let X now represent the observer’s geocentric zenith
on the celestial sphere. We then have

§=pcosAX, n=pcosBX, {=pcosCX ...(76).

Now PX is the meridian of the observer and, since u is the
Ephemeris hour angle of C, the hour angle of C _for the ob-
server, h say, is XPC = [T /\— 1:0027AT. Then XPA4 =90°—h.
Also PX = 90° — ¢'. The first of (76) then becomes, applying
the cosine-formula to the triangle APX,

£=pcos¢’sinh . (77).
Similarly,

= p[sing’cosd — cosd’sindcosk] ... (78),

{ = p[sing’sind + cos¢’' cosd cosk] ...... (79).

The variations &', »" and {’ per hour in the values of £, y and
{ are calculated. For example,

¢ = p'pcosd’cosh,

where p’ is the variation of u per hour.

The values of £, 5 and { are usually computed for the assumed
time of contact; then by means of the calculated quantities
¢, n' and {’, the values of £, and { are obtained at 10-minute
intervals. The values of L, and L, can now be derived from (74)
and (75) at the appropriate instants.

We now consider the conditions for the beginning and end of
a partial or total eclipse at any station. When the partial phase
is just beginning or ending, the observer is situated on the
boundary of the penumbral cone, and his distance from the axis
of the shadow is L,—the radius of the circle in which the plane
z = { cuts the penumbral cone. But the centre of this circle has
co-ordinates (x, y) and the observer’s co-ordinates are (&, 9)—
both referred to axes in the plane z = { drawn parallel to the
fundamental axes. Hence the condition required is

(x— &2+ (y— )= Lz ... (80).
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Similarly, the condition for the beginning or end of the total
eclipse for the station concerned is

x— &2+ (y—7)2=L2 ... (81).

We shall now show how this last equation is to be used in
calculating the beginning and end of the total phase. Let T
denote a suitably chosen E.T. near the time of totality, and
let T -+t be the true E.T. of the beginning (or end) of totality
Let z,, y, be the values of the co-ordinates z, y at time 7', and
&0, Mo the corresponding co-ordinates of the observer. Then we
shall have, at time 7' + ¢, ¢ being expressed in hours,

=2+ 2t Y=y, +y't; £=E&+E n=n+ 7't
Now, by (75), Ly=0—{tanf, ... (82),
and, since f, is a small angle, the value of { tan f, at time T' + ¢
will not differ appreciably from its value at time 7'; also [, varies
very slowly. Hence it will be sufficient to use, in (82), the value

of L, computed for time 7. We then have, for the beginning or
end of the total phase (or of the annular phase),

[Bo— &+t (@ = &P+ [Yo—mo+ (¥ — 7)1 = L,* ...(83).
All the quantities L,, z,, ... 5" being known, (83) is a quadratic
equation in ¢, which will give the instants at which totality
begins and ends.

Let auxiliary quantities m, M, n, N be determined by means of

msin M =2, — &, mcos M =y,— 7 ...... (84),

nsin N=2'— ¢, ncos N=y —7n' ... (85).
As tan M = (xy — &,)/(yo — 7o), there are two values of M,
differing by 180°, which can satisfy (84). Taking m as the positive
square root of [(xy — &)2+ (yo — 7m0)2], we shall choose that
value of M which will give to sin M the same sign as (z,— &;).
The procedure for » and N is similar. Geometrically, m and M
are evidently the distance and position angle of the shadow axis
relative to the observer; » and N, in the same way, give re-
spectively the magnitude and direction of the motion of the
centre of the shadow relative to the observer. Inserting (84),
(85) in (83), we obtain

n%?+ 2mnicos (M — N)+m2— L,2=0 ...... (86).
The two roots of this equation give the beginning and end of
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totality. The solution is usually performed as follows. Let an
angle i be defined as follows:
Lysiny=msin (M - N) ... (87).
The formula (87) gives two values of y~—we shall refer to these
immediately. We have, from (86),
n?%? + 2mnt cos (M — N) + m2cos? (M — N)
= L,2 — m? + m2cos? (M — N)
= L,2cos®y by (87).

Hence t= —,’—Zcos (M-—N);{:gz—(;:is~£ ...... (88).
If r is the numerical value of @7—?5—‘/—} , the beginning of totality

occurs at E.T. (T _%n cosM — N — 7-) and the end of totality

at E.T. (T—Z—zcosM - N +1-). The duration of totality i

27. For some purposes, this result is not sufficiently accurate
and we proceed as follows. Let T be the approximate time of
the beginning of totality. Calculate the quantitiesin (88) for T),.
As before, there will be two roots of (88), one referring to the
beginning and the other to the end of the total phase. Let r,
correspond to the former, so that the beginning of totality is at

E.T.
T, — "™ cos (M~ N))— 7.
!

08

. . L,c 4
where 7, is the numerical value of ~’T computed for T, and

the subscripts refer to the values of m, n, M, N at T,. Let T,
be the approximate time of the ending of totality. Then,
similarly, the end of the total phase is at E.T.

T, — :%cos (M, — N,) +

where the subscripts refer to the values of m, n, M, N at T,.
The difference between the computed times gives the duration
of totality.

If ¢,, 4, are the values of  at the beginning and end of
totality, the quadrants of these angles are defined as follows,
taking into account the two possible values of ¢4 as given by
(87). For the beginning of the total phase, the quadrant is such
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that cos ¢, is positive, and, for the end of the total phase, the
quadrant is such that cos i, is negative.

If it is considered necessary, the computations can be re-
peated, choosing a more accurate value of 7'.

For the calculations of the beginning and end of the partial
phase at any station, a similar procedure is adopted, the value
of L, being, of course, used in the calculations.

As in the case of occultations, the position angle 6 for which
the partial phase is beginning or ending is given by

Lisinf==,— &+t —¢£),
LicosO=y,—no+t(y — 7
the appropriate value of ¢ being that corresponding to the
beginning or to the end of the partial phase, or, using the
appropriate values of N and 3, by 6 = N + 3.

The corresponding position angles for the total phase are
found in the same way.

In the almanacs, the eclipse phenomena, as calculated by the
preceding methods, are shown on charts.

217. The frequency of eclipses.

The interval between new moon and new moon—the synodical
month or lunation—is 29-53 mean solar days. Also we have seen
that the nodes of the moon’s orbit (section 83) make a complete
backward revolution of the ecliptic in 6798-3 days (about
18-6 years). The interval between two consecutive passages of
the sun through a node is then 346-62 days. The sun thus
separates from a node at the rate of 30-67 degrees per synodical
month.

In considering the frequency of eclipses, we first summarise
the relevant data concerning ecliptic limits:

Superior Inferior
Ecliptic limits (lunar eclipse) 12°-3 9°-6
» » (solar eclipse) 18°-4 15°4

In each instance the ecliptic limit refers to the distance of the
sun from a node when a partial eclipse (lunar or solar) is just
possible.

Consider now Fig. 146, in which N and N’ are the nodes. Let
NM;=NM;=N'M,'= N'M; represent the ecliptic limits in
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the case of a lunar eclipse, and NS, = NS, = N’'S,' = N’'S,’ the
ecliptic limits in the case of a solar eclipse.

Now the arc 8,5, is at least 30°-8 (corresponding to the inferior
limit for solar eclipses) and therefore this arc is always greater
than the angle through which
the sun separates from a node
in a synodical month. Hence
one new moon at least and, in
consequence, one solar eclipse

must occur when the sun is

within the arc §,8,. Similarly //// /////
one solar eclipse must occur

when the sun is within the arc
S,'Sy .

Again, the least value of
M, M, is twice 9°-6, or 19°-2,
which is approximately two-
thirds of the motion of the sun
with reference to a node in a synodical month. It is thus pos-
sible for a full moon to occur, following a solar eclipse, near a
node but outside the appropriate inferior limits; it follows that
under these circumstances there will not be a lunar eclipse during
the year.

We conclude that the least possible number of eclipses during
a year is 2, and these are both solar eclipses.

Again, 6 synodical months = 177-2 days and the time re-
quired by the sun to pass from N to N’ is 173-3 days. Therefore
if it is full moon 2 days before the sun passes through %, it will
also be full moon 2 days after the sun passes through N’. The
angular distance of the sun from a node is then well within the
limits for a lunar eclipse and hence, under these circumstances,
there will be 2 lunar eclipses.

After 143 days from full moon, it will be new moon, and during
this interval the sun will move through 154° with reference to
anode, and in 2 days will move 2° approximately. Hence if it is
full moon 2 days before the sun reaches N, the sun will be 13}°
beyond N at the next new moon; at the preceding new moon it
is 173° from N. Also when it is full moon 2 days after the sun
passes through N’, the sun will be 174° beyond N’ at the next

Fig. 146.
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new moon; at the preceding new moon it is 13}4° from N’. Both
133° and 174° are within the superior limits for solar eclipses.
Hence 2 solar eclipses are possible near each node, that is to say,
4 solar eclipses are possible within the interval of 346-6 days.

If the eclipses—when the sun is between § and S;—occur in
January, the sun will be back again between § and &, in the
following December, that is, after 12 synodical months, and in
the next half-lunation a solar and a lunar eclipse will be possible.
Thus, in 12} synodical months, it is possible to have in all 5 solar
and 3 lunar eclipses. But 12} lunations just exceed 365 days.
Hence, in counting the possible eclipses in any year, we must
omit either 1 solar eclipse or 1 lunar eclipse.

We conclude that the greatest number of eclipses possible in
a year is 7, of which 4 are solar and 3 lunar or 5 solar and 2 lunar.

218. The repetition of eclipses.

The interval between two successive passages of the sun
through a node is 346-62 days, and 19 such intervals are equiva-
lent to 6585-8 days. The average value of the synodic month or
lunation is 29-5306 days, and 223 lunations are equivalent to
6585-3 days. We thus have the approximate relation:

223 lunations = 19 revolutions of the sun with respect to a node

= 18 years 11 days, approximately.
This period of 18 years 11 days is called the Saros. Its signifi-
cance with regard to eclipses is as follows. Suppose at new moon
that the sun is within the ecliptic limits, say at S, so that a solar
eclipse takes place. After 19 revolutions with respect to the
node N, the sun will again be at the same distance SN from N
and it will also be again new moon, for a period equal to 223
lunations has elapsed. Hence a solar eclipse will, in general, take
place again.

The same argument applies to lunar eclipses. We thus see
that eclipses are generally repeated at intervals of 18 years
11 days. As 19 revolutions of the sun are not, however, exactly
equal to 223 lunations, it follows that the circumstances per-
taining to one eclipse are not reproduced at the end of the Saros;
in particular, the area on the earth’s surface from which a total
eclipse is visible will, in general, not be the same as that from
which the next one (with reference to the Saros) is visible.
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We add another interesting relation:
235 lunations = 19 years of 365} days.

(235 lunations = 6939-69 days and 19 years = 6939-75 days.)
This is the Metonic cycle. Thus if a full moon occurs on a certain
date, there will be a full moon 19 years later. Clearly, the
Metonic cycle applies in the same way to the repetition of new
moons.

EXERCISES

1. If the inclination of the moon’s orbit to the ecliptic be 5° 20’ 6’”, show
that the moon will at some time occult every star whose latitude is numerically
less than 6° 38’ 24”. [Coli. Ezam.}

2. At midnight, on a certain date, the declination of the moon was 4° 36”467
and its right ascension and declination were increasing at the rates of 235-0 and
164 per 10 minutes, respectively. Show that a star in conjunction in right
ascension with the moon at midnight could not be occulted at or near the time
of this conjunction if the star’s declination were less than 3° 10"-4, the sum of
the moon’s semi-diameter and horizontal parallax being 78%-0. [Ball.]

8. On the assumption of a spherical earth, show that, at a time when the
moon’s horizontal parallax and semi-diameter are respectively P and 8§, any
star of which the geocentric angular distance from the centre of the moon is less
than sin— (sin P + sin S) is occulted by the moon at some part of the earth.

Show also that the greatest possible difference in declination of a star and the
centre of the moon at the instant of conjunction in R.a., which will admit of an
occultation occurring somewhere on the earth, is approximately

sin? {(sin P + sin 8) (m? cos? § + nz)i/(m cos 3)},
where 8 is the declination of the moon at conjunction, and m and n its rates of
variation in R.A. and declination respectively. [(M.T. 1919.]

4. Show that at the time of a partial or total lunar eclipse the geocentric
angular distance of the moon’s centre from the axis of the earth’s shadow must
be less th

0 fess than sin~! (sin P, + sin 8,) — sin~! (sin S — sin P),
where P, P,, S, 8, are the horizontal parallaxes and semi-diameters of the sun
and moon, respectively. The earth, sun and moon are considered to be spherical.
[M.T. 1900.}

6. Show that the maximum duration of totality of a lunar eclipse is

8- 2
2(P+le S S1)<l+8c:): ")cosihours,

~ approximately, if the atmospheric influence be neglected, where P, P,, 8, 8,
s, m are the horizontal parallaxes, semi-diameters and hourly motions in
longitude of the sun and moon, respectively, and i is the inclination of the moon’s
orbit to the ecliptic.
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6. Show that the interval between the middle of a lunar eclipse and the time
of opposition is approximately

mA

———> ————— hours,
m? + n? cos § cos §; ’

where m and n are the differences of hourly motion of the moon and the centre
of the earth’s shadow in declination and right ascension respectively, A is the
difference in declination of the moon and the centre of the earth’s shadow at
the time of opposition, and 3, 8, are the average declinations of the shadow and
the moon during the eclipse. [Coll. Exam.)

7. Show that the duration of a lunar eclipse does not necessarily contain the
instant of opposition in longitude if the eclipse be partial, but must do so if the
eclipse be total. [Ball.)

8. The horizontal parallaxes of the sun and moon being known, find the
maximum inclination of the moon’s orbit to the ecliptic which would ensure a
solar eclipse every month.

9. Explain how a solar eclipse can be total at one place and annular at
another, If at the place where the eclipse is just total at apparent noon the
sun is in the zenith, what is the greatest possible breadth of the annulus at any
other place? [Lond. 1925.]

10. Prove that at the instant of conjunction in right ascension the ratio of
the distances of the sun from the moon and from the earth is

{sin Py — sin P cos (5 — §,)}/sin P,,

8 and 8, being the declinations of the sun and moon, P and P, their horizontal
parallaxes, and the square of sin P being neglected.

Also prove that if ¢ and ¢, be the hourly changes in right ascension of the sun
and moon, respectively, at the same instant, and 4 the hourly change in the
right ascension of the line from the centre of the earth parallel to the line
joining the centres of the sun and moon, then

A=i+ :%‘%%% (&~ dy). [Coll. Ezam.)

11. In 1917, within a few days of Dec. 21, an annular eclipse of the sun
took place, visible near the South Pole. According to the Nautical Almanac the
eclipse was exactly central at midnight in Latitude 89°57’S, Longitude
142° W. According to the Connaissance des Temps the eclipse was central at
noon also in Latitude 89° 57’ S, but in Longitude 38° E. Show that the differ-
ence between the two statements would be accounted for if one almanac had
made its calculations for the sea-level, and the other for a plateau about
15,000 feet above sea-level.

Show also that the difference would be accounted for if the positions of the
moon adopted by the two almanacs differed by about 2} in declination, the
moon’s parallax being §7%, [#.T. 1917.]



OCCULTATIONS AND ECLIPSES 403

12. Obtain the following construction for the approximate determination of
the point @ at which a solar eclipse is central at any particular moment.

M is the point of the earth’s surface at which the moon is in the zenith, and
8§ the point at which the sun is in the zenith. Draw the great circle through
M and 8, and on SM produced take @ such that

8in @ = (a; — a;) cos 3/(P  — P)sin,

where tan g = (a, — ay) cos 3/(3; — 3c)
The following data refer to the solar eclipse of 1922 September 20:
6.M.4.7. of conjunction .., 16b 47m 18
Equation of time... +6m 38
Sun’s declination ... +1° 174277
Moon’s declination + 0°48” 073
Sun’s horizontal parallax 88
Moon’s horizontal parallax 6172471

Show that the point at which the central eclipse takes place at noon is
ipproximately in Longitude 106° 30" E and Latitude 12° S, [M.T. 1922.]



APPENDIX I
The Method of Dependences

219. Introduction.

The method of dependences was first developed by F.
Schlesinger* in 1911 in connection with the determination of
stellar parallaxes and was subsequently applied to the measure-
ment of the positions of asteroids and comets from photographs.f

In section 167 we obtained linear formulae connecting the
standard co-ordinates of a star, or other object, in terms of the
measured co-ordinates and the “plate constants” a, b, ete. To
evaluate the plate constants, we make use of at least three
comparison stars. In the astrographic problem, for example,
if we have several plates giving the position of an asteroid, the
plate constants have to be determined from each plate and this
involves a large amount of numerical work. Consider a series
of plates with the same plate-centre and in which the positions
of the asteroid differ little from one plate to another. The same
comparison stars can be used for each plate and instead of
computing the plate constants for each plate we calculate certain
quantities which depend on the comparison stars selected and
on one position of the asteroid; these guantities, called depen-
dences, are thus independent of the particular plate under
investigation. The position of the asteroid is then expressed
in terms of the dependences and certain measured quantities.
A similar procedure is adopted for the measurement of stellar
parallaxes.

220. The astrographic problem (3 comparison stars).

In this section we shall suppose that we employ three com-
parison stars. For a given plate, the measured and standard
co-ordinates of the comparison stars are given by (57) and (58)
on p. 297. We consider the measures in z only—the procedure

* Astrophysical Journal, vol. xxxm, p. 161 (1911),

+ Astronomical Journal, vol. xxxvi, p. 77 (1926). See also H. C. Plummer,
Monthly Notices, vol. xcm, p. 892 (1932).
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for the measures in y is similar. We then have for the three
comparison stars

L—z=ab+bpp+ec Ll (1),
§3 — Xy = a§2 + b7)2 +c e (2),
£ — 23 = aé; + b773 +¢ ... (3),
and for the asteroid
E—x=af+bn+c ... (4).

If (¢,, n,) are the standard co-ordinates of the asteroid for one
of the plates—we shall refer to it as the ““selected plate ”—we
can write (4) as

f—z=af+bptcta(—E&)+b(p—n)

We are assuming for all the plates concerned that (¢ — ¢,) and
(n — n,) are small quantities. Also, the constants a and b,
which involve principally the scale-correction and the orien-
tation of the plate, are to be regarded as small quantities;
accordingly, we neglect a (¢ — &) and b (3 —~ 7,) in (5) which
then becomes
E—zxz=al+bp+c ... (6).

It is to be remembered that, in (1), (2), (3) and (6), z,, z,, 2,
and = are measured quantities obtained with all neccssary
accuracy. The standard co-ordinates (¢, n,)etc. of the comparison
stars are supposed to be known. We can then, if we please,
solve (1), (2) and (3) in order to obtain a, b and ¢ and then
substitute their values in (6). Suppose for the moment that we
know the values of §, and 7,. We then derive from (6) the value
of ¢ for the plate concerned.

But this procedure is equivalent to the elimination of a, b
and ¢ between the four equations (1), (2), (3) and (6), and we
can effect this elimination as follows.

Multiply (1), (2), (3) and (6) by D,, D,, Dy and — 1 respectively
and add. We obtain

Dy — ) + Dy (€3 — ) + Dy (& — 25) — (£ — 2)
= a{D§, + Dby + Doy — &}
+ b {D1"h + Dyny + Dyny — "Io}
+ec{Dy+Dy+ Dy -1} L (7.
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The elimination of a, b and ¢ is effected if

D1§1 + szz + Dafs = fo ------ (8),
Dl"]l +Dyne+ Dymy=my  eeeenn (9,
D, +D, +D, =1 ... (10),

and these are three equations from which D,, D, and D, can be
obtained.

The factors D,, D, and D, are called the dependences. We
then have from (7)

E—x=D ({4 — )+ Dy (& — 7)) + Dy (6 — )

from which ¢ can be determined, all the other quantities being
now supposed known.

Now (¢, — zy), (&, — x,) and (§; — x,) are all small quantities
and it will thus be sufficiently accurate to determine D,, D,
and D, if we substitute in (8) and (9) the measured co-ordinates of
the comparison stars and the asteroid for the selected plate.
Denoting these by (X,, Y,), (X,, Y,), (X;, Y,) and (X,, Y,)
respectively, the equations to determine D,, D, and D, become

D)X, +D,X,+ D, Xy=X, ... (12),
DY, +D,Y,+ D, Y, =Y, ... (13),
D, +D, +D, =1 ... (14),
from which, solving in determinant form, we have for D,
D 1

X, X;, X, = XK, X, T (15).
Yo, Y5, Y5 Y, Y, Y,

1, 1, 1 L, 1,1

In Fig. 147, let §;, 8, and S, be the positions on the selected
plate of the images of the comparison stars, and 4, the position
of the image of the asteroid. Then the determinant under D,
in (15) is simply twice the algebraic measure of the area of the
triangle 4,8,8; and the second determinant in (15) is twice the
area of the triangle §,8,8;. We obtain similar results for D, and
for D, and we then have, as the solutions of (12}, (13) and (14),

D, D, D, 1
A8, 8y AoSy S, 48,8, 818,8, T
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Let the straight lines through 4,and the vertices of the triangle
cut the sides in P,, P, and P,.

4,8,8, A4,P,

Then 5,8,8," 5,
Hence
_4,p _ 4P, _
D, = 5Py D, = 5.7, and D;=1— D, — D, ...(17).

The values of D,, D, and D, can be readily obtained, with
sufficient accuracy, by plotting the
positions of the comparisonstars and
asteroid on squared paper, from the
measured co-ordinates of the selected
plate. It can be shown that the
results of applying the method are S
most accurate when 4, in Fig. 147
coincides with the centroid of the
triangle §,8,8;. In most instances it
is possible to choose the comparison
stars to satisfy this condition ap-
proximately. In any event, we
choose the comparison stars so that

the asteroid is within the triangle Fig. 147.
which they form.
We rewrite (11) as
3 3
= 2 D,'f‘ + xr — Z Dix‘ ...... (18).
i=1 =1
3 3
Similarly 7= 2 Dn +y— iZ Dy, — ...... (19).
i=1 =1

3
In (18) the expression (x — X D,x,) is obtained, let us say,
1

in millimetres and its actual value will depend on the scale
of the plate taken with a particular telescope whose focal length
we denote by f,. The standard co-ordinates, on the other
hand, are generally expressed in terms of the scale of the *“ astro-
graphic telescope” the focal length of which we denote by f,
(fs = 3-44 metres so that 1 mm. on the plate corresponds to 60"’).
Consequently, we require to multiply (x — ZD;x,) by f,/f; so
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that £ may be given by (18) in astrographic units. A similay
action is to be taken with respect to (19).

It is to be remembered that (¢;, %,) in (18) and (19) denote the
standard co-ordinates of a comparison star with respect to the
centre of the plate measured. If we make use of an Astrographic
Catalogue we then obtain the standard co-ordinates of the com-
parison stars with respect to the “astrographic centre”, that is,
the centre of the astrographic plate from which the published
standard co-ordinates are derived. If ¢/, &', &' and ¢’ denote the
standard co-ordinates of the three comparison stars and the
asteroid relative to the astrographic centre, we have, with
sufficient accuracy,

=4+ k ., E=E¢E+E,
where k is the standard co-ordinate of the centre of the measured

plate with respect to the astrographic centre. Thus we obtain
from (18), since D, + D, + Dy =1,

3 3
€= S Dt +x— 3 Dxy e (20),
i=1 i=1

with a similar equation for %’.

Exzample.

The following example has been given by H. E. Wood, *
relating to Comet 19115, The values of ¢, &’ and £, are taken
from the Oxford Astrographic Catalogue. We give the data
in tabular form for deriving the standard co-ordinate £’ of the
comet.

Star 4 T y D D¢ Dz
7-692 56067 116605 0-233 1-7922 1-3064

1
2 17-650 15-8160 22-0935 0-273 4-8184 4-3178
3 23-547 21-6011 9-3951 0-494 11-6322 10-6709

1-000 18-2428 16-2951

For the comet,
z=163437, y= 133462 ... (21).
The dependences, D, in column 5 are found by means of a figure
using the measured co-ordinates in columns 3 and 4 and the
values of z and y for the comet as given in (21).
From (21) and the last column, we find that
z — =Dz, = 16-3437 — 16-2951 = + 0-0486.
® Journal of the Brit. Ast. Association, vol. XXX1X, p. 201 (1929).
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We can obtain the value of the factor f,/f; from the above data
with sufficient accuracy, as follows. We have

& — & = 9958 and z, — x; = 10-2093.
Hence in astrographic co-ordinates

z — XDz, = + 0-0486 x % = + 0-0478,
Accordingly, from (20),

¢ = 18-2428 + 0-0478
= 18:2906.

This is the £ standard co-ordinate of the comet referred to the
astrographic centre.

The 75 co-ordinate is obtained in a similar way. If desired, the
right ascension and declination of the comet can be computed
by the formulae (22) and (23) of p. 285—or by equivalent
formulae.

221. The astrographic problem {n comparison stars).

We suppose now that the number, n, of comparison stars is
greater than 3. We now have n equations of the form (1) to
give the values of the plate constants a, b and ¢. They are

a§1+bn1+c=§l—x1]
eyt bpte=§6—a,
a§n+bnn+ €= §n_xn
The values of a, b and ¢ are to be obtained by the method of
least squares. Multiply each by the corresponding coefficient
of a and, adding, we obtain
aféP+ &+ o+ EH O Emt Emt o+ Eana)
telb+ . té&=5LE—2)+ &G — )
This is usually written in the notation
a [§2) + b [Eim] + e (€] = [€: (6 — )] ... (23),
the square brackets denoting summations for ¢ = 1, 2, ..., n.
Similarly, by multiplying each equation of (22) by the corre-
sponding coefficient of 4, and adding, we obtain

alén]l+ b2+ clnd=[n € — )] ...... (24).
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Also, adding the »n equations of (22), we have

alf]+bMp)+ne=[&—x] ... (25).
As in (6), the equation for the asteroid is
afp+bp+te=6—2 ... (26),

in which, as before, ¢, and 7, denote the standard co-ordinates
of the asteroid for a selected plate.

To eliminate a, & and ¢ from the four equations (23)-(26)
multiply these in order by P, @, R and — 1 and add. Then if
P, ¢ and R are given by

PR + QUEm]+REI=6& ... (27),
Pml+ Q@2 +Bpl=m ..ooe. (28),
P&l + Qo] +Rn =1 ... (29),

we have

E—2=P[& (&~ 2)]+ Qn (b — x)] + R[& — 2]

which can be written

E-z= 3 (PL+ Qu+B) (& ).
Set Di=P&+ Qi+ R (30).
Then E—zx= E]l D¢i—2) . (31).

In this last equation, D; is a function of the standard co-
ordinates of the n comparison stars and of £, and 7,. Since
(¢, — =;) is a small quantity for any one of the stars it will be
sufficient to regard D, as a function of the measured co-ordinates
Zyy oees Yns Zo, Yo TOr the selected plate ; as before, we denote these
co-ordinates by X, Y,, X,and Y,. Thus P, @ and R are now to
be determined from (27), (28) and (29) in which we replace ¢; ete.
by X, etc. Hence

P[X? + QXY J+R[X]=X, ...... (32),
PIX, Y]+ QY2 +R[Y]=Y, ...... (33),
P[X] + Q[Y] +Bsn =1 ... (34).

We can simplify the calculation of P, @ and R by supposing that
forthe selected plate the valuesof X;, Y, X, and Y, are measured
from the centroid of the n comparison stars. We then have

S X,=3 Y,=0

{=1 i=1
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and P, @ and R are now to be determined from

PIX# +Q[X Y ]=X, ... (35),

PX,Y]+Q(Y? =Y, ... (36),

Bn=1 ... (37).

Then Dy=PX,+ QY+ R ... (38).

The quantities D; are the dependences.

The practical procedure is first to calculate P, @ and R by
means of (35), (36) and (37) and then to form the dependence D,
for each star by means of (38).

As in the previous section,

n

D=1 ... (39),
i=1

as we can see from (38) and (37), remembering that
X, =3Y;=0.

When the dependences have been calculated the value of ¢
for the asteroid can be then found from (31) for any number of
plates.

It is to be remarked that the application of (31) requires that
the values of £; for the n comparison stars should be accurately
known and that the values of z and of z, for the » comparison
stars should be accurately measured.

222. Application of the method of dependences to the determination
of stellar parallaz.

The method of dependences can be used advantageously in the
reduction of parallax measures.

Let ¢, denote the heliocentric standard co-ordinate of the
parallax star at time 4,. Asin section 175 we denote the parallax
factor for an observation made at time ¢ by F, and the com-
ponent of the annual proper motion by pu, (= p.cos8). The
geocentric standard co-ordinate ¢ at time ¢ is then given by

f=¢4+FI1 + T, ... (40),
where I1 is the parallax of the star and 7' = ¢ — ¢, in years. But

from the measurement of a plate obtained at time ¢, we have the
value of ¢ given by (31) as

f =2 +i§:1 D( (g‘ - x‘) ...... (4]).
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Hence from (40) and (41)

FIL+ Tp, 4 & — % D=2 — % Dyt oonnn.(42).
i=1 =1
Lot m=z— 3 D, e (43),
i=1
n
C=&-5D& (44).
Then 1+ T, +C=m ... (45).

In (43), m depends on the measured quantities z; for the
comparison stars and on the measured quantity z for the
parallax star. In (44), C is a constant for each plate if we
suppose the comparison stars to have negligible parallaxes and
proper motions (actually, IT and u, in (45) are the relative
parallax and proper motion, that is, relative to the mean of the
comparison stars). Thus each exposure provides an equation
of the form of (45) and the values of I, u, and C (this is of no
further interest) are determined from a least squares solution of
all such equations. As the number of plates measured is
usually at least a score, the convenience of the method and its
economy in calculation can be readily appreciated.

Ezxample.

The data below (in terms of a particular scale unit) are taken
from the measures of a star, as given by Schlesinger.* Four
comparison stars were used.

Star X Y x D Dz
1 — 378 + 62 198-766 0-25 49-6915
2 -8 + 200 569-351 0-48 273-2885
3 + 84 - 130 660-934 0-11 72-7027
4 + 302 — 132 879-485 0-16 140-7176
Parallax —403 + 755 535133 — 2Dz = 536-400
star

In columns 2 and 3 the co-ordinates of the four comparison
stars and of the parallax star are with reference to the centroid

& Astrophysical Journal, vol. xxxIm, p. 163 (1911),
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of the four comparison stars. From the values for the comparison
stars we find
iX‘z = 241,208; 5 Y, = 78,168; f:X,Y, = —-175,820.
=1 i=1 i=1
Inserting these values in (35), (36) and (37) and putting
Xy= —40-3, Y, = + 75-5 (from the last line of the table), we
find that
P =0-000196, Q = 0-00116, B = 0-250.
The values of D, are then calculated from (38)—they are shown
in the fifth column. The products D;x; are then formed for each
star and the sum XDz, is shown at the bottom of the last
column. Thus for this particular exposure the value of m,
given by (43), is
535:133 — 536:400 = — 1-267.
Algo, for this particular exposure F = + 0-880 and T = + 0-723,
8o that we have from (45),
0-880IT + 0-723u, + C = — 1-267  ...... (48).
From the least square solution of all the equations of condition
similar to (46), the values of Il and p, in terms of the scale unit
were found to be 0-1055 and — 0-1307 respectively, yielding
the final results
II =072814 07-004; p,= — 0"-348,
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Stellar Magnitudes
223. Apparent magnitude.

The first classification of the stars, visible to the naked eye,
according to their apparent brightness was made by Hipparchus
about two thousand years ago. The fifteen brightest stars were
designated ‘“‘stars of the first magnitude ” and stars just visible
to the naked eye “stars of the sixth magnitude ”, stars of inter-
mediate brightness being assigned to intermediate magnitude
classes. With accurate instruments at present available for
measuring the relative brightness of the stars, it is essential to
have an accurate classification according to brightness and
“magnitude” has now come to mean a number, on a certain
scale, associated with the brightness of a star. If m, and m,
denote the magnitudes of two stars on this scale, and I, and [,
their apparent brightness or luminosity, the difference of mag-
nitude, my — m,, is defined by the formula

{,1 = 10-0-4(mi—m,)
2

A difference of 5 magnitudes thus corresponds to a ratio of
100 : 1 in brightness and a difference of one magnitude to a
ratio of 2:512 : 1. The zero of the magnitude scale is chosen
arbitrarily. On the visual magnitude scale as adopted in practice
magnitude zero corresponds approximately to the brightness of
the star o Lyrae (Vega) whose magnitude is in fact 0-04. The
visual magnitude scale (V) corresponds to that part of the
spectrum to which the eye is most sensitive.

Other magnitude scales are introduced in the same way,
corresponding to different parts of the spectrum. The two other
systems in most frequent use are the blue (B) magnitude scale
and the ultra-violet (U) scale. Again the zero-points of the scales
are chosen arbitrarily. The choice is such that for a star like
Vega the V, B and U magnitudes are all equal. In general the
d‘#arences between these magnitudes for a particular star
depend mainly on the star’s temperature.
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224. Absolute magnitude.

Although one star may appear to be brighter than another,
it does not follow that the first star is inérinsically more luminous
than the second. The brightness of a star varies inversely as the
square of its distance from us; if / denotes its apparent bright-
ness corresponding to its distance d and L denotes what its
apparent brightness would be if it were at a standard distance D
from us, we have

2
%=% ...... ).
Let 3f denote what the star’s apparent magnitude would be if
it were at the standard distance D. Then, by (1) and (2),

10-04(m—M) — %
from which M —m=>5log,(D/d) ... (3).
But the star’s parallax II (in seconds of arc) is defined by
a (x4
II= 7 cosec e (4),

where a is the radius of the earth’s orbit. Similarly, if Il is the
parallax corresponding to the distance D,

I, = % cosec 1" veeeed(B).
Hence, from (4) and (5),
D 1
d I,
and, from (3),
M=m+ 5log, 1 —58log,, 1T, ... (6).

The standard distance, D, is by convention ten parsecs, so that
I1, = 0-1. Hence we have
M=m+5+56log,, 1 ... (7),
in which M is called the absolute magnitude.
It is found that the absolute magnitudes of the stars range
from about — 5§ to + 15, corresponding to a range in intrinsic
luminosity of 1004 : 1 or 100,000,000 : 1.
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The Coelostat

225. General principles.

For eclipse and certain astrophysical observations it is con-
venient to use a telescope which is fixed in position. Conse-
quently, it is necessary to have subsidiary apparatus whose
function is to reflect the light from the heavenly body under
observation into the fixed telescope. Such an auxiliary instru-
ment is called a coelostat. Its principal feature is a plane mirror

Fig. 148,

which can be made to rotate about a diameter at a uniform rate,
this diameter being parallel to the earth’s axis.

In Fig. 148, the mirror (which is generally circular) is shown
with its axial diameter A B—the remainder of the instrument is
not shown—and OM is the normal to the mirror. The telescope
is mounted as illustrated in the figure, 7' being the object glass
and C the focal plane in which a photographic plate can be
placed. The mirror is initially adjusted with its normal OM
in such a position that the beam of rays from a heavenly body S
is reflected along OT, which is collinear with the optical axis
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of the telescope. As we shall see later, the mirror is made to
rotate at half the angular rate of the diurnal motion of § and this
is a necessary condition that the rays from S shall continue to
fall normally on the object glass at T after reflection at the mirror.
We denote by ¢ the angle between the normal of the mirror and
the direction OS8 or OT.

Let O, the centre of the mirror, be the centre of the celestial
sphere in Fig. 149, Then S gives the direction of the heavenly

Fig. 149,

body, M the direction of the normal of the mirror and T the
direction of the rays after reflection. Since the axis 4B of the
mirror is parallel to the earth’s axis of rotation, M in Fig. 149
is on the celestial equator F'G. If & is the declination of 8, the
arc F'S, measured along the meridian PS8, is 8. Let the meridian
PT intersect the equator in G. Then by the laws of reflection
0S8, OM and OT are coplanar and therefore 8, M and T lie on
a great circle; also the ares SM and MT are equal and each is
equal to¢. It followsthat G7T isequal to SF,so that PT = 90° + 3.

Again, GM = MF and consequently TEPM = SPM; we denote
these angles by &,
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Since the telescope is fixed in position, 7' is a fixed point on
the celestial sphere. Let the altitude and azimuth of 7' be
a and A respectively; then @ and A are constants for a given
position of the telescope.

Let H be the hour angle of §, H’ the hour angle of f and K
(a constant) the hour angle of 7. We have

H=H+h and H+ 2h=K

from which 2H' = H + K.
dH’' 1dH
Hence T eenea(1).

This formula gives the rate at which the mirror must be rotated
about its axis AB. For the sun, the rate may be expressed as
360° in 48 hours or 7}° per mean solar hour, very nearly. For
a star, the rate is 74° per sidereal hour.

228. Formulae for the position of the telescope.

We investigate now the various ways in which the telescope
may be set up in a given latitude 4.

(i) From the triangle PZT, in which

PZ = 90° — ¢, ZT = 90° — a, PT = 90° + § and PZT = 4,
we have by formula A,
—sind=sin¢sina + cosdcosacos 4 ...... (2),

which gives the necessary relation between a and A for rays to
be reflected into the telescope. Thus, if it is decided to have the
telescope inclined to the horizontal at a certain angle, the
azimuth 4 is easily calculated from (2).

(ii) In particular, it may be found convenient to mount the
telescope horizontally; in this case @ = 0° and A4 is given by

cosd =—sgindsecp = ... (3),
with the condition for the numerical values of 3 and ¢ that
8+ ¢ < 90°

(iii) Again, it may be found convenient to mount the telescope
in the meridian, in which event, 4 = 180° and (2) becomes
8in & = cos (¢ + a)
whence a=90°-¢—-8 ... (4).
(iv) A further practical consideration concerns the magnitude
of the angle 4 which, as a general rule, ought to be kept fairly
small.
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The cross section of the reflected beam is an ellipse with
principal axes in the ratio cos+:1. It is always desirable to
“fill”” the object glass of the telescope and the condition for this

is that cosi > % , where d and D are respectively the diameters

of the object glass and the mirror.

From the triangle PSM, in which PM = 90°, we have, by
formula A,

cost=cosdcosh ... (5).

It is seen from (5) that 7 is & minimum when A = 0. Thus the
minimum value of ¢ is 8. It follows that, in this case, M and T'
lie on the meridian PS, with M at F and 7 at 7" where
FT" = FS = 3. The altitude, a’, of 7" is then easily found from
the triangle PZT" in which PT’ = 90° + 8: we have

sing’ = —sindsin¢ + cosdcospcos H ...... (6).

For example, with regard to a total eclipse of the sun, the hour
angle H for mid-totality can be found with sufficient accuracy
and hence a’ can be calculated from (6). The azimuth, 4, of 7
can then be found from the formula

—gind =sin¢ sina’ + cospcosa’cos 4’ ...... (7).



420

APPENDIX A

ASTRONOMICAL CONSTANTS

Dimensions of the earth:
Equatorial radius, ¢ = 6378-160 km

Polar radius, b =6356-775 km
. _e=b 1
Fl&ttemng, c = . = m

Length of the day:
Mean sidereal day = 232 56™ 42091 mean solar time
Mean solar day =24 3 56 -555 mean sidereal time

Length of the month (1900):
Synodical = 294.530589 =294 12h 44m 2s.9

Tropical =27 -321582=27 7 43 47
Sidereal =27 321661 =27 7 43 115
Anomalistic = 27 554551 =27 13 18 33 -2
Nodical =27 -212220=27 5 5 358

Length of the year (1900):
Tropical = 36542422

Sidereal = 365 -2564

Anomalistic = 365 2596

Eclipse = 346 -6200
Solar parallax = 8794
Moon’s equatorial horizontal parallax = 57 2”-608
Constant of aberration = 20"-496
Constant of nutation = 9”210
General precession = 50'"-2564 4 07-0222T*
Frecession in R.A., m = 46"-0850 + 0702797

=3%07234 + 05-001867
Precession in Dec., n = 207-0468 — 0"-0085T
Obliquity of ecliptic, €= 23° 27" 8-26—46"-85T
Mean geocentric distance of moon = 384401 km
Mean geocentric distance of sun = 149,597,900 km
(1 astronomical unit)
1 Parsec = 30-86 x 102 km
1 Light-year =946 x 102 km
Velocity of light = 299,792-5 km per second
Light travels 1 astronomical unit in 499-012 seconds
Constant of gravitation, G =6-670 x 102 c.c.8. units or
6670 x 107! s.1. units

Solar apex R.A, =181 04m or 271°, Dec. = + 30°

Pole of galactic plane (1900},  B.A. =121 46™-6, Dec. = + 27° 40’
* T is measured in Julian centuries from 1900-0.
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APPENDIX B

DIMENSIONS OF THE SUN, MOON AND PLANETS

Sun
Moon
Mercury
Venus

Earth
Mars
Jupiter
Saturn
Uranus

Neptune
Pluto

Semi-diameter
Symbol in km
® 696,000
( 1,738
¥ 2,430
? 6,050
6,378 (Eql.)
® 6,357 (Polar)
3,395 (Eql.)
g {3,375 (Polar)
71,600 (Eql.)
67,350 (Polar)
(59,650 (Eql.)
53,850 (Polar)
(
(

o

23,550 (Eql.)
21,900 (Polar)
w 24,200 (Eql.)

23,700 (Polar)
PL 5,900?

o>

Mean

Period of Reciprocal Density orbital
axial mass*  (water velocity
rotation (Sun=1) =1) (km/sec)

259-4 1 1-41 —
2743 27,136,000 334 1-02
58¢-6 6,023,600 544 47-9
2434-0 408,590 523 350
23n 56m 328,912 5-52 29-8
241 37m 3,098,500 394 24-1
9r 50m 1,047-39 1-33 1341
10k 14m 3,4985 070 97
100 49m 22,900 171 6-8
150 48m 19,300 1-77 54

634  4,000,000? 4-6? 4-7

* These masses include the mass of the satellite system, if any.
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APPENDIX C

MEAN ELEMENTS OF THE PLANETARY ORBITS
FOR THE EPOCH 1975 JANUARY 0-5 E.T.

Semi-major Sidereal
axis @ (in period in Sidereal  Synodic
astronomical Eccentricity  tropical mean daily  period
Name units) e years motion n  (in days)
Mercury 0-387099 0-205629 0-24085 4°-092339  115-88
Venus 0-723332 0-006785 0-61521 1°-602130  583-92
Earth 1-000000 0-016720 1-00004 0°-985609 —
Mars 1-523691 0-093 382 1-88089 0°-524033  779-94
Jupiter 5-202804 0-048460 11-86224 0°-083091  398-88
Saturn 9-538844 0-055630 29-45771 0°-033460  378-09

Uranus 19-181854 0-047250 84-01247 0°-011732  369-66
Neptune  30-057960 0-008586 164-79558 0°-005981  367-49

Pluto* 39-20976 0246115  246-378 0°-004001  366-75
Mean longitude
Of the
ascending
Inclination node Of perihelion At the epoch
Name ) 6 @ €
Mercury  7°-00427 48°:03493 77°:06645  320°-66305
Venus 3°39438  76°45475 131°.21928  310°97453
Earth 0°-0 0°-0 102°-51044 99°-534 31
Mars 1°-84983 49°-36466  335°-59881  249°-62919

Jupiter 1°-30450  100°-19608 13°-91992  355°-21414
Saturn 2°-48033  113°-43842 92°-55833  104°-17278
Uranus 0°77316 73°-87283  170°-25472  205°-78286
Neptune 1°-77236  131°-50506 44°-40592  249°-91462
Pluto* 17°-14451  109°-9965 224°-2580 202°-3345

* The elements for Pluto are osculating elements, which define the instantaneous
orbit of the planet round the sun.
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ELEMENTS AND DIMENSIONS OF THE SATELLITES

Planet
Earth
Mars

Jupiter

Saturn

Uranus

Neptune

Satellite

II

I
III

VI
VII
VIIT*
IX*

XTI*
XI1*
XIII

II
III
v

Vi
VIII
IX*

II
III
v

T*
II

Moon

Phobos
Deimos

To
Europa
Ganymede
Callisto
Almathea
Himalia
Elara
Pasiphae
Sinope
Liysithea
Carme
Ananke
Leda
Mimas
Enceladus
Tethys
Dione
Rhea
Titan
Hyperion
Tapetus
Phoebe
Janus
Ariel
Umbriel
Titania
Oberon
Miranda
Triton
Nereid

Mean
distance
from planet

(unit

= 10% km)

3844

94

23-5
422
671
1070
1883
181
11478
11737
23500
23600
11720
22600
21200
11100

186
238
295
378
527
1222
1483
3560
12950
159

192
267
438
586
130

355
5562

Sidereal
period
(in days)
27-32166

0-31891
1-26244

1-76914
3-:55118
7-15455
16-68902
0-49818
250-57
259-65
739
758
259-22
692
631
240

0-04242
1-37022
1-88780
2-73692
4-51750
15-94545
21-276 66
79-33085
550-34
0-7490

2-52038
414418
870588

13-46326
1-414

5-87684
359-88

* Motion retrograde.

Eccen-
tricity
of mean
orbit

0-05490

0-0210
0-0028
0-000
0-000
0-001
0-007
0-003
0-158
0-207
04
0-275
0-12
0-207
0-169
?

0-0202
0-0045
0-0000
0:0022
0-0010
0-0292
0-1042
0-0283
0-1633
0-0
0-0028
0-0035
0-0024
0-0007
<001
0-00
075

Dia-

950
1300
4800

450
1100

200

300

700
500
1000
900
250

3800
300
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EPHEMERIS AND UNIVERSAL TIME

The rotation of the earth is a basis for time-measurement and
as regards Universal T'ime (U.T.) this rate of rotation is assumed
to be uniform. Recently, first crystal and then atomic clocks —
now accurate to 1 part in 1013 — have shown that the earth’s
rotation is at times irregular, the deviations from uniformity
being minute—of the order of 1 or 2 milliseconds per day—and
unpredictable. In the gravitational theories of the bodies of the
solar system, the passage of time is postulated to be uniform;
this time is defined as Ephemeris Time (£.7.) and it is in terms
of E.T. that astronomical quantities are now tabulated in the
almanacs. The epoch from which E.7. is measured is

1900 January 0-5 [E.T.],

more elaborately defined in 1958 as “the instant near the
beginning of the calendar year a.p. 1900 when the mean longi-
tude of the sun was 279° 41’ 48”-04, at which instant the measure
of £.1. was 1900 January 0, 12 h. precisely”’. The epoch for v.t.
is 1900 January 0, 12 h. [U.T.]. Although the two epochs are
apparently denoted by the same expression, they do not corre-
spond to the same instant of time, the epoch of E.T. being 4 s.
later than that of u.T.

The E.T. for any instant is then defined by the following
formula for the geometric mean longitude of the sun:

L=279° 41’ 48"-04 4+ 129602768"-13T + 1”-08972,

Here T is the ephemeris time measured in Julian centuries of
36525 ephemeris days from the fundamental epoch. The ®r.a.
of the fictitious mean sun is given by the same expression with
the effect of aberration added. The Rr.a. of the fiducial point for
U.T., which we are calling simply the mean sun, has the same
expression as that of the fictitious mean sun with universal
time replacing ephemeris time as the argument.

It may be added that the fundamental unit of time is
1 second (E.T.) derived as 1/31556925-9747 of the length of the
tropical year for 1900-0.
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The numbers refer to the pages

Aberration, annual, 179; constant
of, 185; constant of (in relation to
the solar parallax), 213; differential,
297; diurnal, 80, 191; ellipse, 181;
law of, 178; in astronomical photo-
graphy, 296; planetary, 193

Absolute proper motions, 304

Adams, C. E., 125

Altitude, 26; parallel of, 26

Altitude Tables, 333

Analogies, Delambre’s, 22; Napier’s,
23

Analogue-formula, 10

Angle, spherical, 2; hour, 29; of re-
fraction, 61; of the vertical, 196;
parallactic, 49; trigonometrical
ratios for small, 21

Annual aberration, 179

Annual parallax, 218

Annual variation, 241, 260

Annular eclipse, 387

Anomalistic month, 133

Anomalistic year, 132

Anomaly, eccentric, 111; mean, 113;
true, 111

Ant-apex, 264; position angle of, 265

Antarctic Circle, 48

Apastron, 343

Apex, solar, 261

Aphelion, 99

Apogee, 132

Apparent co-ordinates, 259

Apparent noon, 41

Apparent orbit of a visual binary,
345

Apparent place of a star, 245

Apparent sidereal time, 138

Apparent solar day, 41

Aquino, R. de, 333

Arctic Circle, 48

Aries, first point of, 37

Artificial satellites, 204

Astrand, J. J., 115

Astrographic plates, measurement
of, 298

Astrometric co-ordinates, 300

Astronomical constants, 420

Astronomical latitude, 196

Astronomical unit, of distance, 101

Astronomical zenith, 196

Auxiliary ellipse, 352

Axis, collimation, 75

Azimuth, 27, 30; rate of change of,
48

Azimuth error, 76; determination
of, 89

Azimuth Tables, 323

Baldwin, J. M., 265

Ball, Sir R. S., 212

Batten, A. H., 366

Bauschinger, J., 115

Besselian Day Numbers, 184, 244,
246

Besselian elements, of an occulta-
tion, 373; of a solar eclipse, 390

Besselian star constants, 246

Besselian year, 145

Bessel’s formula, 80

Bessel’s method of investigating an
occultation, 370

Binary, eclipsing, 366; spectroscopic,
357

Binary star, 340; apparent orbit of,
345; elements of orbit of, 342

Bohnenberger eye-piece, 87

Boss, Lewis, 241

Bradley, 178; formula for refraction,
72

Brightness, of planets, 169

Burdwood’s Azimuth Tables, 323

Calendar, 144

Campbell, W. W., 83

Cancer, Tropic of, 151

Capricorn, Tropic of, 151

Cardinal points, 27

Cassini’s hypothesis (refraction),
72

Cataloguing the stars, 246
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Celestial equator, 28

Celestial horizon, 26

Celestial latitude and longitude,
40

Celestial sphere, 1, 33

Centering error, 289, 316

Centre, equation of the, 119, 148

Christie and Dyson. Method of deter-
mining plate constants, 307

Chronograph, 90

Circle, Antarctic, 48; Arctic, 48;
great, 1; position, 320; small, 1;
vertical, 26

Circumpolar stars, 32

Clock stars, 95

Coelostat, 416

Colatitude, 5

Collimation axis, 75

Collimation error, 76, 78; deter-
mination of, 83; in sextant, 316

Collimation plane, 75

Collimator, 84

Companion (of a binary star), 340

Comparison stars, 304

Comsrie, L. J., 375

Conjunction, 129

Constant of aberration, 185; mea-
surement of, 187; related to solar
parallax, 213; theoretical value of,
190

Constant of gravitation, 101

Constant of nutation, 247

Co-ordinates, galactic, 276; helio-
centric ecliptic, 122; heliocentric
equatorial, 124; heliographic, 169;
mean and apparent, 259; standard,
280

Correction for light-time, 193

Cosine-formula, 6

Culminate (to), 29

Culmination, lower, 33; upper, 33

Curve, velocity, 359

' Day, mean solar, 42; sidereal, 37, 138

* Day-Numbers, Besselian, 184, 244,
246; independent, 184, 245

Dead reckoning, 322

Declination, 29, 35; measurement of,
91; parallel of, 29

Deimos, 103

Delambre, analogies, 22

Dependences, 404

INDEX

Dimensions of the sun, moon and
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Dip of the horizon, 317

Direct motion, 162

Disc, 167; heliographic co-ordinates
of centre of, 171

Distance, astronomical unit of, 101;
north polar, 29; zenith, 26

Diurnal aberration, 191

Diurnal method (solar parallax), 210

Doolittle, 316

Dynamical parallaxes, 356

Dynamical principles of orbital mo-
tion, 104

Dyson, Christie and, 307

E-terms (aberration), 186

Earth, heliocentric rectangular co-
ordinates of, 126; orbit of, 37, 131

Eccentric anomaly, 111; as a series,
117

Eccentricity, 99

Eclipse, of the moon, 378; of the sun,
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Eclipses, frequency of, 398; repeti-
tion of, 400

Eclipsing binary stars, 366

Ecliptic, 38; mean, 238; obliquity of,
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Ecliptic limits, 381, 388

Elements, determination of the, 129;
of orbit of binary star, 342; of orbit
of a planet, 116, 122; of the plane-
tary orbits, 422; of the satellites,
423

Ellipse, aberrational, 181; auxiliary,
352; parallactic, 219

Elliptic orbits, elements of, 116, 122,
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Elongation, 163

Ephemeris Time, 139, 424

Epoch, 122; mean longitude at the,
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Equation of the equinoxes, 139

Equation of time, 42, 146

Equator, celestial, 28; mean, 137,
238; reduction to the, 148; solar,
170; terrestrial, 4; true, 242

Eguatorial parallax, mean horizon-
tal, 200
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238; precession of the, 226; true,
242; vernal, 37, 39

Eros, opposition of, 208, 212
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Fictitious mean sun, 140, 424

Film-to-film method of measuring
proper motions, 306
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Flattening, 198
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sine, 9

Four-parts formula, 12

Frequency of eclipses, 398

Fundamental plane, 369, 390

Fundamental stars, 95

Galactic co-ordinates, 276

Galactic latitude, 267

Galactic rotation, 273, 275
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Geocentric celestial sphere, 33

Geocentric distance, 128
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co-ordinates of sun, 127

Geocentric motion of a planet, 160

Geocentric parallax, 199

Geocentric right ascension and
declination of a planet, 127

Geographical position, 321

Geoid, 195; dimensions of, 198

Gibbous, 168

Gladstone and Dale’s Law, 66

G.M.T., note on, 44

Gnomonic Projection, 337

Gravitation, constant of, 101 ; law of,
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Great circle, 1; equation of, on
Mercator’s chart, 335; pole of, 1

Greenwich mean astronomical
time, 43

Greenwich mean noon, 43

Greenwich tables of refraction, 68

Gregorian calendar, 145

Halley, 249

Haversine, definition of, 18; formula,
19

Heliocentric distance, 99

Heliocentric ecliptic rectangular
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Heliocentric equatorial rectangu-
lar co-ordinates, 124, 125

Heliocentric rectangular co-or-
dinates of earth, 126

Heliographic co-ordinates,
of a sun-spot, 174

Heliographic latitude and longitude,
171

Hill, S. N., 265

Hipparchus, 226, 249

Horizon, celestial, 26; dip of the,
317

Horizon-glass, 315

Horizontal parallax, 200

Horizontal refraction, 69

Hour angle, 29; of the mean sun, 42

169;

Immersion, 368

Independent day numbers, 184, 246
Index error, 316

Index-glass, 315

Index of refraction, 59

Inman’s Nautical Tables, 19
Intercept, 323

Julian calendar, 144
Julian date, 146
Jupiter, geocentric motion of, 163

Kapteyn, J. C., 302, 306

Kepler’s equation, 113; solution of,
114

Kepler’s Laws, 98

Knot, 23

Kowalsky’s method (visual binary),
346

Kiistner, 190

Lambert’s theorem, 135

Laser, distance of the moon, 203

Latitude, astronomical, 196; cele-
stial, 40; galactic, 267; geocentric,
196; parallel of, 5; variation of,
190

Leap-year, 144

Lehmann-Filhés, 360

Level error, 76; determination of,
87

Light, velocity of, 420

Light-year, 224
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Line, position, 323; rhumb, 326;
Sumner, 323

Local sidereal time, 41

Longitude, celestial, 40; mean, 122;
nutation in, 233, 246; of ascending
node, 121; of perihelion, 121; ter-
restrial, 5; true, of a planet, 121

Loxodrome, 326

Lunation, 398

Luni-solar precession, 228

Magnitude (of a partial eclipse), 385
Magnitude, Stellar, 414; absolute,
415; apparent, 414

Major axis, 99

Major Planets, 98

Masses, of the planets, 102; of
spectroscopic binaries, 366; of the
stars, 355

Mass-function, 365

Mean angular motion, 100

Mean anomaly, 113

Mean co-ordinates, 259

Mean ecliptic, 238

Mean equator, 137, 238

Mean equinox, 137, 238

Mean longitude, 122

Mean noon, 43

Mean place, reduction from, to
apparent place, 245

Mean refraction, 62

Mean sidereal time, 138

Mean solar day, 42, 140

Mean solar time, 41; conversion of,
into sidreal time (and wvice versa),
143

Mean sun, 42; hour angle of, 42;
right ascension of, 42, 140

Mercator’s chart, 326

Meridian, observer’s, 29; terrestrial,
5

Meridian circle, description of, 76;
errors of, 74

Metonic cycle, 401

Micrometer, 341

Mihalis, D., 275

Mile, nautical, 6

Milky Way, pole of, 57

Month, anomalistic, 133; nodical,
133; sidereal, 133; synodie, 133

Moon, eclipses of, 378; orbit of, 132;
perallax of, 200; phases of, 166;
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time of transit of, over any meri-
dian, 155

Motion, mean angular, 100; paral-
lactic, 260; solar, 260

Napier, analogies, 23; rules for right-
angled and quadrantal triangles, 15

Nautical mile, 6

Newcomb, S., 239

New moon, 133

Newton, law of gravitation, 101

Node, 120; longitude of ascending, 121

Nodical month, 133

Noon, apparent, 41; mean, 43

North polar distance, 29

Nutation, 136, 231; constant of, 247;
in longitude, 233, 246; in the
obliquity, 233, 246

Obliquity of the ecliptie, 39; nuta-
tion in, 233, 246

Observed altitude, corrections to
the, 317

Observer's meridian, 29

Occultations, 368; Besselian ele-
ments of, 373; Bessel’s method of
investigating, 370; geometrical con-
ditions for, 369; graphical method
for, 375; prediction of, 373; reduc-
tion of, 376

Opposition, 130

Orbit, determination of elements of &
planetary, 129; elements of elliptic,
116, 122; equation of, 106; in space,
120; of the earth, 37, 131; of the
moon, 132; period in, 99; sun’s
apparent, 131

Orbital motion, dynamical prin-
ciples of, 104

Orientation, error of, 288

Parallactic angle, 49; ellipse, 219;
motion, 260

Parallax, annual, 218; geocentric,
199; horizontal, 200; in right ascen-
sion, and declination, 204 ; in zenith
distance and azimuth, 206; mean
equatorial horizontal, 200; of the
moon, 200; solar, 207; stellar, 217,
309, 411

Parallaxes, dynamical, 356; secular,
262, 306; statistical, 266
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Parallax factor, 222

Parallel, of altitude, 26; of declina-
tion, 29; of latitude, 5

Parsec, 223

Partial eclipse, of the moon, 378; of
the sun, 386

Pearce, J. A., 265

Penumbra, 379, 386

Periastron, 343

Perigee, 132

Perihelion, 99; longitude of, 121

Periodic terms, 231

Periods, orbital and synodic, 129

Perpendicularity, error of, 316

Perturbations, 103

Phase, 166

Photographic plate, measurement
of, 285

Photographic refractor, 278

place, apparent, 245; mean, 300;
true, 242

Plane, collimation, 75; fundamental,
369, 390; tangent, 280

Planet, brightness of, 169; geocentric
motion of, 160; heliocentric co-
ordinates of, 122; phase of, 166;
velocity of, 108

Planetary precession, 235

Planets, major, 98; masses of the,
102; dimensions and elements of,
422

Plate constants, 297

Plummer, H. C., 129, 404

Pluto, discovery of, 98

Polar formulae, 15

Pole, of a great circle, 1; of a small
circle, 1; of Milky Way, 57; terres-
trial, 4

Position angle, 173; of a binary
star, 340; of the ant-apex, 265

Position circle, 320

Position line, 322; tables, 333

Precession, 136, 226; effect of, on
right ascension and declination,
229; general, 237; luni-solar, 228;
planetary, 235

Primary, 340

Prime vertical, 27

Probable error, 312

Proper motion, absolute, 304; com-
ponents of, 252; definition of, 249;
measurement of, 251, 301; relative,
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304; the film-to-film method of
measuring, 306; total, 252
Pulkova Tables (refraction), 68

Quadrantal triangles, 14
Quadrature, 168
Quasar, 368

Radar, distance of the moon, 203;
distance of Venus, 212

Radial velocity, 213, 251 ; determina-
tion of solar motion from, 274 ; solar
motion and, 263

Radio-occultation, 368

Radius vector, 99

Reduction to the equator, 148

Reference stars, 298

Refraction, angle of, 61; constant of
mean, 62; differential, 294; effect
of, on right ascension and declina-
tion, 70; effect of, on time of sunset,
69; general formula for, 62; hori-
zontal, 69; in astronomical photo-
graphy, 291; index of, 59; laws of,
58; mean, 62.

Refractor, photographic, 278

Relative proper motions, 304

Retrograde motion, 162

Rhumb line, 326

Rigge, W. F., 375

Right-angled triangles, 14

Right ascension, 37; measurement
of, 93; of the mean sun, 42

Rising, 46

Roemer, 178

Saros, 400

Satellites, elements and dimensions
of, 423; artificial, 204

Schlesinger, F., 404, 412

Seasons, 150; lengths of, 153

Secular parallax, 262, 306

Secular terms, 231

Secular variation, 240

Semi-diameter, 93, 203

Semi-major axis, 99

Setting, 46

Sextant, 314; errors of, 316

Shearme, F. N., 333

Side error, 316

Sidereal day, 37, 138

Sidereal month, 133
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Sidereal time, 37, 136; apparent,
138; conversion of, into mean time,
143; ephemeris, 159; local, 41;
mean, 138

Sidereal year, 131, 141

Simpson’s hypothesis (refraction),
72

Sine-formula, 9

Small circle, 1; length of arc of, 3

Solar equator, 170

Solar motion, 260; apex of, 261;
determination of, from proper mo-
tions, 267; determination of, from
radial velocities, 274

Solar parallax, 207; diurnal method,
210; related to constant of aberra-
tion, 213

Solstice, summer, 40, 150; winter,
40, 150

Southern hemisphere, diagram for,
31

Spectroscopic binaries, 357; masses
of, 366

Spectroscopic method applied to
solar parallax, 213

Spherical angle, 2

Spherical triangle, 1; solution of,
35

Standard co-ordinates, 280; for-
mulae for, 283

Standard error, 312

Stars, circumpolar, 32; clock, 95;
comparison, 304; fundamental, 95;
masses of, 355; reference, 95

Stationary point, 162, 164

Statistical parallaxes, 266

Stellar parallax, 217; effect of, on
right ascension and declination,
220; measurement of, 222, 309

St Hilaire’s method (position line),
322

Stracke, Q., 129

Sub-solar point, 321

Sub-stellar point, 321

Summer solstice, 40, 150

Sumner line, 323

Sun, apparent orbit of, 131; axis of
rotation of, 172; eclipses of, 386;
mean, 42, 139; time of transit of,
over any meridian, 155

Sunset, effect of refraction on time
of, 69
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Sun-spot, heliographic co-ordinates
of, 174

Synodic month, 133

Synodic period, 129

Tangential velocity, 250

Tangent plane, 280

Telescope, photographic zenith, 190;
photographic, 278; refracting, 279,
287; transit, 74

Terrestrial latitude and longitude, 5

Thackery, A. D., 213

Tilt, error of, 291

Time, equation of, 42, 146; Green-
wich civil, 44; Greenwich mean
astronomical, 43; local civil, 44;
local sidereal, 41; mean solar, 41;
measurement of, 95; sidereal, 37,
136; universal, 44; zone, 44; ephe-
meris, 139, 424

Torrid zone, 152

Total eclipse, of the moon, 378; of
the sun, 386

Total proper motion, 252

Transferred position line, 330

Transit, 29, 33; of Venus, 212

Triangle, quadrantal, 14; right-
angled, 14; spherical, 1; solution of,
35

Trigonometrical ratios for small
angles, 21

Tropic of Cancer, 151; of Capricorn,
151

Tropical year, 132, 141

True anomaly 111; as a series, 118

True equator, 242

True equinox, 242

True place of a star, 242

Turner, H, H., 283, 297

Twilight, 51

Umbra, 379, 386
Universal time, 44, 139, 424

Van Maanen, A., 312

Variation, annual, 241, 260; of lati-
tude, 190; secular, 240

Velocity, components of, 110; radial,
213, 251; tangential, 250

Velocity curve, 359

Venus, transit of, 212

Vernal equinox, 37
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Vertical, angle of the, 196; circle, 26;
prime, 27
Visual binary, orbit of, 342

Winter solstice, 40
Wire intervals, 82
Wood, H. E., 408

Year, anomalistic, 132; Besselian,
145; sidereal, 131, 141; tropical,
132, 141
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Zenith, 25; astronomical, 196; geo-
centric, 196

Zenith distance, 26; rate of change
of, 48; refraction for a small, 60;
the calculated, 323

Zone, temperate, 152; torrid, 152

Zone time, 44

Zwier’s method (visual binary star),
351
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PREFACE

HIS BOOK is based on lectures given annually in the
University of Cambridge and on a parallel course of in-

struction in Practical Astronomy at the Observatory. The recent
changes in the almanacs have, in many respects, affected the
position of the older textbooks as channels of information on
current practice, and the present work is intended to fill the
gap caused by modern developments. In addition to the time-
honoured problems of Spherical Astronomy, the book contains
the essential discussion of such important subjects as helio-
graphic co-ordinates, proper motions, determination of position
at sea, the use of photography in precise astronomical measure-
ments and the orbits of binary stars, all or most of which have
received little attention in works of this kind. In order to make
certain subjects as complete as possible, I have not hesitated to
cross the traditional frontiers of Spherical Astronomy. This is
specially the case as regards the spectroscopic determination of
radial velocity which is considered, the physical principles being
assumed, in relation to such problems as solar parallax, the solar
motion and the orbits of spectroscopic binary stars.

Throughout, only the simplest mathematical tools have been
used and considerable attention has been paid to the diagrams
illustrating the text. I have devoted the first chapter to the
proofs and numerical applications of the formulae of spherical
trigonometry which form the mathematical foundation of the
subsequent chapters. Although other formulae have been given
for reference, I have limited myself to the use of the basic
formulae only.

A writer of a textbook on Spherical Astronomy cannot avoid
a certain measure of detailed reference to the principal astro-
nomical instruments and, accordingly, general descriptions of
instruments have been given in the appropriate places, usually
with a simple discussion of the chief errors which must be taken
into account in actual observational work.

In numerical applications, the almanac for 1931 has been used.

As regards notation, I have usually followed the recommenda-
tions of the International Astronomical Union, but I have made
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several modifications when the avoidance of confusion or of
misconception seemed to me of greater importance than the rigid
adherence to the definite system proposed; for example, the
angle of stellar parallax has been denoted by II instead of the
usual symbol = which the student is apt to associate on most
mathematical occasions with the properties of the circle.

I have also followed the advice of the International Astro-
nomical Union [T'ransactions, vol. 111, p. 300 (1928)] as regards
the nomenclature of standard mean time, and throughout the
book @.c.T. (Greenwich Civil Time) denotes the mean time, for
the meridian of Greenwich, reckoned from midnight. (See also
footnote to p. 44 infra.) This is contrary to the present usage of
the British Nautical Almanac which, since 1925, has employed
the symbol ¢.M.T. in the sense in which ¢.c.T. has just been
described, notwithstanding the fact that previous to 1925 ¢.M.T.
universally signified the mean time reckoned from mean noon at
Greenwich. The latter I have denoted (also in accordance with
the recommendations of the 1.A.U.) by the letters ¢.M.A.T.
(Greenwich Mean Astronomical Time).

At the end of each chapter there is a collection of exercises
many of which have been taken, by permission, from the papers
set in the Mathematical Tripos at Cambridge and in the
examinations of London University and Cambridge Colleges;
several have also been taken from Ball’s Spherical Astronomy.

I have the pleasant duty of recording my indebtedness to
Professor W. E. Anderson, of Miami University, Oxford, Ohio,
U.S.A,, and to Mr M. J. Dean, B.A., Scholar of Trinity College,
Cambridge, who have read the whole of the manuscript with the
greatest care and removed many blemishes which might have
escaped less vigilant eyes. I am also grateful to Dr F. S. Hogg,
formerly of Amherst Observatory, Mass., U.S.A., who has read
critically about half of the book, and to Dr L. J. Comrie, Super-
intendent of the Nautical Almanac Office, for helpful suggestions
in the chapter on Occultations and Eclipses.

It is also a pleasure to express my thanks to the officials and
staff of the University Press for their courtesy and care during

the printing of the book.
W. M. S.

OBSERVATORY, CAMBRIDGRE
1931 January 1



PREFACE TO THE SIXTH EDITION

SINC E this book was first published there have been consider-
able changes in the terminology and the quantities tabulated
in the Astronomical Ephemeris and other almanacs. In making
this revision I have felt that it is important to recognise these
changes and to ensure compatibility of the book with the
Astronomical Ephemeris. While 1 hope that this has been
generally achieved, slight differences do remain in the treatment
of solar eclipses and in the definition of the Besselian Day
Numbers for annual aberration.

Without doubt the most important change in the almanacs
has been the introduction of Ephemeris Time. As it is this time
that is used as the argument in almost all tabulation in the
almanacs, it clearly requires an important place and adequate
description in an introductory text such as this. Accordingly I
have made substantial revision to the chapter on Time in
stressing the distinction between Ephemeris and Universal
Time. A difficulty arose, however, in connection with the exposi-
tion of this distinction. Professor Smart had used the term,
mean sun, to define Universal Time. The mean sun is a wholly
fictitious body that was introduced to define solar time long
before the distinction, that we are concerned with, was recog-
nised. Newcomb called it the fictitious mean sun and gave it a
very precise and formal definition. Newcomb’s work naturally
related to the subsequent definition of Ephemeris Time and so
I have retained, his term, the fictitious mean sun, as a reference
point for Ephemeris Time. For continuity, I have also retained
Smart’s use of the term, mean sun, as a reference point for
Universal Time. I hope that this dichotomy, which is not stan-
dard usage, will not lead to confusion in practice. It is not
intended to imply that only one of the reference points is
fictitious; both are.

I have taken the opportunity of adding a number of exercises
at the end of several chapters. Some of these are taken, by
Permission from recent examination papers of Glasgow Uni-
versity. It is hoped that some of these examples will be helpful
in illustrating new material that has been added to the text.
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As this is intended to be a revision of an existing text and not a
major reorganisation of it, the detailed subject matter of the
book remains the same as in previous editions, with the excep-
tion of parts of Chapter vi on Time. I have, however, added
fairly frequent comments in the text to indicate the sometimes
modified relevance of the subject matter under discussion to
modern astronomy.

A guiding principle of the revision has been to re-establish
compatibility with the Astronomical Ephemeris and, to a lesser
extent with the fuller explanations of the Explanatory Supple-
ment to the Astronomical Ephemeris and the American Ephemeris
and Nautical Almanac. In the original edition of this book
Professor Smart took his numerical examples from the almanac
(thel the Nautical Almanac) of 1931. Where the quantities
extracted from that almanac correspond either exactly or very
nearly with those tabulated in the current Astronomical
Ephemeris, I have retained that example with only minimal
modification. Where, however, such detailed correspondence
does not exist, I have substituted a new example based on the
Astronomical Ephemerts of 1975, In no case is a quantity used
that is not tabulated in the current Astronomical Ephemeris,
whatever the apparent date of the example.

It is a pleasure to acknowledge my considerable debt to
Dr G. A. Wilkins, Superintendent of the Nautical Almanac
Office, who has drawn my attention to many points requiring
revision in this book. Further I am indebted to Dr A. E. Roy
for many informative discussions and guidance and to Mrs L.
Williamson for her considerate typing of the often intricate
material. )

R. M. G.
DEPARTMENT OF ASTRONOMY,

UNIVERSITY OF GLASGOW
1976 July 7
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